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Abstract: We present a model of price discrimination where a monopolist faces consumers

with unitary demands who learn their valuations over time. Consumers are privately in-

formed at the time of contracting about valuation distribution, but they privately learn

their actual valuations after contracting. The monopolist sequentially screens consumers

with a menu of contracts: they �rst choose a contract and then choose the level of consump-

tion according to the terms speci�ed in the contract. A deterministic sequential mechanism

is a menu of refund contracts, each consisting of an advance payment and a refund amount

in case of no consumption, but general sequential mechanisms may also involve random-

ization. We characterize the optimal sequential mechanism both when some consumers are

more eager than others in the sense of �rst-order stochastic dominance, and when some

face greater valuation uncertainty than others in the sense of mean-preserving-spread. We

show that it can be optimal to subsidize consumers with smaller valuation uncertainty

through low refund in order to reduce the rent to those with greater uncertainty, who

purchase more \exible" contracts with greater refund. The size of distortion depends on

how informative consumers' initial private knowledge is about their valuations from the

monopolist's point of view, but not on the size of valuation uncertainty if it a�ects all

consumers.
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1. Introduction

The mechanism design literature has shed light on many commonly used price discrim-

ination schemes.1 However, most models developed in this literature are static in that

consumers are assumed to make consumption decisions at the same time as they select a

contract. This assumption is not innocuous when consumers learn new information about

their demand over time. Consider the demand for plane tickets. Travelers typically do

not know their valuations for tickets until just before departure, but they know in advance

their likelihood to have high and low valuations. A monopolist can wait until the trav-

elers learn their valuations and charge the monopoly price, but more consumer surplus

can be extracted by requiring them to reveal their private information sequentially. An

illustration of such monopoly practice is a menu of refund contracts, each consisting of an

advance payment and a refund amount in case the traveler decides not to use the ticket. By

selecting a refund contract from the menu, travelers reveal their private information about

the distribution of their valuations, and by deciding later whether they want the ticket or

the speci�ed refund, they reveal what they have learned about their actual valuation.

The following example of airplane ticket pricing illustrates sequential price discrimina-

tion.2 Suppose that one-third of all potential buyers are leisure travelers whose valuation

is uniformly distributed on [1; 2], and two-thirds are business travelers whose valuation is

uniformly distributed on [0; 1][ [2; 3]. Intuitively, business travelers face greater valuation

uncertainty than leisure travelers. Suppose that cost of ying an additional traveler is 1.

If the seller waits until travelers have privately learned their valuations, she faces a valua-

tion distribution that is uniform on [0; 3]. The optimal monopoly price is 2 with expected

pro�t of 1
3
, thus excluding all leisure travelers and as well as half of business travelers who

turned out to have low valuations. Suppose instead the seller o�ers two contracts before

the travelers learn their valuation, one with an advance payment of 1.5 and no refund and

the other with an advance payment of 1.75 and a partial refund of 1. Leisure travelers

strictly prefer the contract with no refund. Business travelers are indi�erent between the

1 One of the earliest contributions to this literature is Mussa and Rosen [1978]. Wilson [1993] gives an
excellent account of applications to real-life pricing problems.

2 The numbers of this example are chosen to expedite exposition. Later we will formally derive the
optimal menu of refund contracts and use the example to illustrate some of main results of this paper.
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two contracts so we assume that they choose the contract with refund. The monopolist

separates the two types and earns an expected pro�t of 2
3
, doubling the pro�ts of charging

the monopoly price after travelers have learned their valuations.

This paper considers a class of monopolist sequential screening problems where con-

sumers sequentially learn their demand and contracts are signed when consumers only have

partial private information. Such pricing problems are not unique to airplane ticket pric-

ing and refund contracts. Sequential mechanisms take di�erent forms in hotel reservations

(cancellation fees), car rentals (free mileage vs. �xed allowance), telephone pricing (calling

plans), public transportation (day pass), and utility pricing (optional tari�s). Sequential

price discrimination can also play a role in contracting problems such as taxation and

procurement where the agent's private information is revealed sequentially.

Surprisingly, sequential screening has not received much direct attention in the screen-

ing literature. Although sequential mechanisms share the characteristic with two-part tar-

i�s that consumption decisions are made sequentially, and there is an abundant literature

on two-part tari�s (see, e.g., Wilson [1993]), the empirical importance of sequential mech-

anisms suggests that two-part tari�s are more than a simple way of implementing concave

nonlinear tari�s. Moreover, sequential mechanisms have a learning feature that the typical

textbook example of two-part tari� does not have: when consumers choose a two part-

tari� they do not know the quantity they wish to consume or the valuation they place on

the good. An implication of this learning feature is that consumers typically su�er from

\regret" at the time of consumption: a businessman could have bought the same ticket at

a lower advance price had he known that he would y for sure, or a traveler could have

avoided the cancellation fee had he known his itinerary when he reserved the hotel room.

The primary goal of this paper is to show that sequential mechanisms help producers

to price discriminate when consumers learn private information about their demand over

time. Although sequential mechanisms can take di�erent forms, we restrict our attention

to situations where consumers have unit demands as in the airplane ticket pricing problem.

In these situations, optimal ex post pricing scheme (after consumers have complete pri-

vate information about their demand) degenerates to standard monopolist pricing. This

allows us to focus on the e�ects of consumer learning on sequential price discrimination.

When consumers have unit demand, the monopolist price-discriminates only by choosing

the probability that he delivers the good. Although refund contracts constrain the delivery
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probabilities to zero or one, a general sequential mechanism is a menu of contracts consist-

ing of pairs of delivery probability and payment to the monopolist. E�ciency is achieved

by delivering the good if and only if the consumer's valuation exceeds the production cost,

but the optimal sequential mechanism can generate either downward or upward distor-

tions. Downward distortions in sequential mechanisms (i.e. not delivering the good when

the consumer's valuation is greater than the cost) are similar to the standard \rationing"

result in nonlinear pricing models that under-provision of quality or quantity is used to

extract more surplus from more eager consumers (see, e.g., Mussa and Rosen [1978], or

Maskin and Riley [1984].) More surprisingly, it can be optimal to \subsidize" consumption

by some consumers (i.e. providing the good when the consumer's valuation is below the

cost). Ine�cient over-production typically arises only in multi-product price discrimination

problems when better separation is achieved by subsidizing some goods (see, e.g., Adam

and Yellen [1976], or Rochet and Chone [1998].)3 Although there is only one product in

our problem, ine�cient over-production can be used e�ectively as a price discrimination

instrument when the production cost is relatively low and consumers di�er su�ciently in

the degree of valuation uncertainty they face.

In section 2, we consider the problem of designing the optimal menu of refund contracts

for two ex ante types of potential buyers. To continue with the airplane ticket pricing

example, the business traveler is either an eager consumer who is more likely to draw

higher valuations than the leisure traveler, in the sense of �rst-order stochastic dominance,

or a consumer who faces greater valuation uncertainty than the leisure traveler, in the

sense of mean-preserving-spread (Rothschild and Stiglitz [1970]). In either case, we show

that there is no consumption distortion for the business type in the optimal menu of refund

contracts. In the case of �rst-order stochastic dominance, rationing the leisure type is the

optimal way of reducing the rent to the business type. In the case of mean-preserving-

spread, subsidy as well as rationing can be optimal. Su�cient conditions are provided

such that when the production cost is low, subsidizing the leisure type with a refund lower

than the cost of the ticket is cost-e�ective in reducing the rent to the business type. For

airplane ticket pricing, the marginal cost is low when capacity constraint is not binding, so

3 Over-production can also occur in the single-product monopoly models when reservation utility in
participation constraints varies with the type of agents. See Lewis and Sappington [1989].
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our result that the business type purchases a contract with a higher refund explains why

it can be optimal for airlines to o�er business travelers more \exible" contracts.

Section 3 examines the general problem of sequential price discrimination with contin-

uous types. This generalization enables us to discuss how type distribution and consumer

learning a�ect the design of sequential mechanisms. We characterize the optimal sequen-

tial mechanism for a case where consumers face the same valuation uncertainty but di�er

in expected valuation, and a case where consumers have the same expected valuation but

di�er in valuation uncertainty. In both cases, the delivery rule is shown to be deterministic,

and can therefore be interpreted as a menu of refund contracts, or a two-part tari�. The

size of distortion depends on the informativeness of consumers' initial private knowledge

about their valuations from the monopolist's point of view, as well as on the type distri-

bution. Distortions are small if consumers' initial private knowledge is not informative in

that valuation distributions conditional on types do not vary much across di�erent types of

consumers. The size of distortion does not depend on any additional valuation uncertainty

if it a�ects all consumers. For example, adding a valuation shock to individual uncertainty

that a�ects all consumers independently does not change the optimal menu of contracts. In

the �rst case, where consumers di�er in their expected valuation, consumers with greater

expected valuations are less likely to be rationed and choose the refund contract with lower

advance payment and lower refund. In the second case, where consumers di�er in valuation

uncertainty they face, types facing smaller valuation uncertainty have larger consumption

distortions. As in section 2, distortions can be either rationing or subsidy, and the latter

is optimal when production cost is low.

Section 4 o�ers further comments on sequential screening. Neither �rst-order dom-

inance nor mean-preserving-spread is su�cient for reducing the dimension of the design

problem. This insu�ciency results from the multi-dimensional nature of the sequential

mechanism design problem, which also makes it possible that random delivery rules are

optimal. We use a two-type example of airplane ticket pricing to illustrate how random

delivery rules can �ne tune sequential screening when business travelers face greater val-

uation uncertainty but have a smaller mean valuation than leisure travelers. We show

how a tension arises under refund contracts between exploiting the high mean valuation

of the leisure type and exploiting the fat tail of the business type, and how randomization
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can help �ne tune sequential discrimination. Section 5 concludes with some discussion on

related works and future direction of this line of research.

2. Optimal Menu of refund contracts: Two-Type Case

Consider a monopoly seller of airplane tickets facing two types of travelers, B and L, with

proportion fB and fL respectively. There are two periods. In the beginning of period one,

the traveler privately learns his type which determines the probability distribution of his

valuation for the ticket. The seller and the traveler contract at the end of period one. In the

beginning of period two, the traveler privately learns his actual valuation v for the ticket,

and then travelling may take place. Each ticket costs the seller c. The seller and the traveler

are risk-neutral, and do not discount. Throughout this section, we will think of type B as

the \business type," which values the ticket more or faces greater valuation uncertainty;

type L is a \leisure" traveler. Greater valuation of the business type is captured by �rst-

order stochastic dominance (FSD). The valuation distribution GB of type B �rst-order

stochastically dominates GL of the leisure type if GB(v) � GL(v) for all v in the range

of valuations [v; v]. Greater valuation uncertainty of the business type is represented by

mean-preserving-spread (MPS, Rothschild and Stiglitz [1970]). The valuation distribution

GB dominates GL by MPS if they have the same mean and
R v
v
(GB(u)�GL(u))du � 0 for

all v 2 [v; v]. Let gB and gL be the density functions of the two types.

A refund contract consists of an advance payment a at the end of period one and a

refund k that can be claimed at the end of period two after the traveler learns his valuation.

Clearly, regardless of the payment a, the consumer travels only if he values the ticket more

than k. The seller o�ers two refund contracts faB; kB ; aL; kLg. The pro�t maximization

problem can be written as:

max
kL;kB;aL;aB

X
t=L;B

ft(at �Gt(kt)kt � (1 �Gt(kt))c)

subject to

(IRt) 8t = L;B; �at + ktGt(kt) +

Z v

kt

vdGt(v) � 0;

(ICt;t0) 8t 6= t0; �at + ktGt(kt) +

Z v

kt

vdGt(v) � �at0 + kt0Gt(kt0) +

Z v

k
t0

vdGt(v):

The �rst set of constraint (IR) is the individual rationality constraints in period one. The

second set (IC) is the incentive compatibility constraints in period one.
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Lemma 2.1. Under either FSD or MPS, IRL and ICB;L imply IRB.

Proof. The two individual rationality constraints can be rewritten as:

8t = L;B; �at +

Z v

v

maxfkt; vgdGt(v) � 0:

Then, ICB;L implies

�aB +

Z v

v

maxfkB; vgdGB(v) � �aL +

Z v

v

maxfkL; vgdGB(v):

Since maxfkL; vg is an increasing function of v, if GB dominates GL by FSD,Z v

v

maxfkL; vgdGB(v) �

Z v

v

maxfkL; vgdGL(v):

Since maxfkL; vg is a convex function of v, the above condition holds also if GB(v) domi-

nates GL(v) by MPS. The lemma then follows from IRL. Q.E.D.

Thus, the business type gets more utility than the leisure type from any refund con-

tract, whether it is de�ned by greater valuation or by greater uncertainty. Indeed, we can

de�ne the business type by combining FSD and MPS. For example, take a distribution GB

that dominates GL by MPS. Shifting the whole distribution GB to the right gives a new

distribution that has both greater average valuation and greater valuation uncertainty. It

is easy to see that the above lemma continues to hold for this combination of FSD and

MPS. Note that Lemma 2.1 does not hold under general second-order stochastic domi-

nance, i.e. greater dispersion without the restriction of the same mean. This can be seen

from the proof of the lemma. Under general second-order stochastic dominance the inte-

gration of the function maxfk; vg over [v; v] can be either greater or smaller for a dominant

distribution. An example where the business type faces greater valuation uncertainty but

has a smaller mean than the leisure type will be analyzed in section 4.

Lemma 2.1 implies that IRL binds (holds with equality) in the optimal menu of

refund contracts, otherwise increasing both aL and aB by the same amount would increase

pro�ts. Also, ICB;L binds in the optimal menu of refund contracts, otherwise pro�ts could

be increased by increasing aB . Substituting IRL and ICB;L into the objective function

and ignoring ICL;B, we obtain the following \relaxed" problem:

max
kL;kB

Z v

kL

(fL(v � c)gL(v) � fB(GL(v) �GB(v)))dv +

Z v

kB

(fB(v � c)gB(v))dv:
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Let S(kL) =
R v
kL
(v � c)gL(v)dv be the surplus from the leisure type, and R(kL) =R v

kL
(GL(v) � GB(v))dv be the rent to the business type, both as function of the refund

to the leisure type. Since the choice of refund for the business type is unconstrained, it

should be equal to c to maximize the surplus from the business type. Refund for the leisure

type should be chosen to maximize the surplus from the leisure type less the rent to the

business type, so the solution is given by argmaxkfLS(k)� fBR(k). Now we are ready to

state the �rst main result of this paper.

Proposition 2.2. Under either FSD or MPS, in the optimal menu of refund contracts,

kB = c and kL = argmaxkfLS(k)� fBR(k).

Proof. It su�ces to show that the \upward" constraint ICL;B is satis�ed by the given

fkB; kLg. Since ICB;L binds, we have

aL � aB =

Z kL

kB

GB(v)dv;

which implies

� aL + kLGL(kL) +

Z v

kL

vdGL(v)

=� aB + kBGL(kB) +

Z v

kB

vdGL(v) �

Z kL

kB

(GB(v) �GL(v))dv:

Thus, ICL;B is satis�ed if and only if
R kL
kB

(GB(v) � GL(v))dv � 0. If the solution to

the relaxed problem has kL = c, the proposition follows immediately. Suppose that the

solution has kL 6= c, and
R kL
c

(GB(v)�GL(v))dv > 0. Consider an alternative menu where

the two types have the same refund c. The surplus S(c) from type L is greater in the

alternative menu. The rent to type B is smaller in the alternative, because

R(c) =

Z v

kL

(GL(v) �GB(v))dv +

Z kL

c

(GL(v) �GB(v))dv <

Z v

kL

(GL(v)�GB(v))dv:

This contradicts the assumption that fkL; kBg solves the relaxed problem. Thus, the

solution to the relaxed problem satis�es ICL;B. Q.E.D.

The derivation of the optimal menu of refund contracts is completed by �nding the

advance payments aL and aB from IRL and ICB;L. Proposition 2.2 shows there is no
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consumption distortion for the business type, either when it's de�ned by FSD or MPS, or

a combination of the two as described previously. Under FSD, the rent function R(kL) is

decreasing for any kL. Since the surplus S(kL) from type L is increasing for any kL < c, the

solution to the relaxed problem has kL � c. Thus, we have the standard result that there

is rationing for the leisure type to lower the rent given away to the business type. Under

MPS, the rent R(kL) is not a monotonically decreasing function of the refund kL to the

leisure type. Instead, R(kL) is zero at both v and v, and tends to be greater in the middle of

the support. In this case, subsidy as well as rationing can be used to reduce the rent to the

business type. In order to obtain more insights about the nature of consumption distortion

for the leisure type, we need to impose additional restrictions on top of dominance by MPS.

Suppose that the rent function R(�) is single-peaked at some z 2 (v; v). This is satis�ed if

for example GB and GL di�er by a single mean-preserving-spread (Rothschild and Stiglitz

[1970]). For simplicity, let's assume that there is no \plateau" at z so that GB(v) > GL(v)

for all v < z and GB(v) < GL(v) for all v > z. An example of this is normal distributions

with the same mean z and a greater variance for type B.4

Under the assumption of single peak, the rent to the business type is the greatest

when the refund for the leisure type equals the peak of the distributions, and it falls

monotonically on either side of the peak. Whether it is optimal to subsidize (set kL < c)

or ration (kL > c) the leisure type depends on how the loss of surplus due to distortions

compares with rent reduction. Note that when R(�) is single-peaked at some z 6= c, the

optimal refund to the leisure type kL cannot lie between c and z. For example, if c < z,

then any kL 2 [c; z] cannot be optimal because by decreasing kL toward c the seller could

increase the surplus S(kL) and decrease the rent R(kL). Furthermore, setting kL = c

cannot be optimal, since by decreasing kL slightly below c, surplus from type L is not

a�ected (because S0(c) = 0) but the rent to type B decreases. With the values between c

and z excluded, intuition suggests that it is optimal to subsidize consumption when the cost

is low, and to ration when the cost is high. The reason is that when the cost is below the

peak of the rent function, rationing is too costly because it prevents many pro�table trades,

while when the cost is above the peak, subsidy means too many ine�cient trades. The

4
If U is a random variable with log-concave density function, and V has zero mean and is independent

of U , then the distribution functions of U + V and U have the above desired properties. See Shaked and
Shanthikumar [1994].
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following two results give su�cient conditions under which such patterns of distortions are

optimal. The �rst one assumes symmetry of the density functions; the second one assumes

that the proportion of business travelers is su�ciently small and/or the cost is su�ciently

di�erent from the peak of the rent function.

Proposition 2.3. It is optimal to subsidize (ration) the low type when c < z (c > z) if at

least one of the following two conditions is satis�ed: (i) gB and gL are symmetric around

z; (ii) fBR(c) � fL(S(c)� S(z)).

Proof. (i) Suppose that c < z < kL. Since gB and gL are symmetric around z, the

rent function R(�) is also symmetric around z. If z < kL �< 2z � c, an alternative menu

with ~kL = 2z � kL yields a greater surplus because c � ~kL < kL, and the same rent by

symmetry, a contradiction. Suppose kL > 2z � c. Comparing the slope of S(�) at any

k > 2z � c and at ~k = 2z � k, we have

�S0(k) = (k � c)gL(k) = (k � c)gL(~k) > (c� ~k)gL(~k) = S0(~k):

It follows that S(~kL) > S(kL) for any kL > 2z�c and ~kL = 2z�kL. Since R(~kL) = R(kL),

the alternative menu yields a greater pro�t, a contradiction. The proposition then follows

from the fact that kL cannot lie between c and z. The argument is similar when c > z > kL.

(ii) Suppose that c < z. Since kL cannot lie between c and z, either kL < c or kL > z.

The pro�t of setting kL < c is at least as great as fLS(c) � fBR(c), since choosing kL

slightly below c always reduces the rent without changing the surplus at the margin. On

the other hand, the pro�t of setting kL > z is at best as great as fLS(z), with maximum

surplus and zero rent. If fBR(c) � fL(S(c)� S(z)), setting kL > z cannot be optimal. A

similar argument holds when c > z. Q.E.D.

Thus, according to Proposition 2.3, the pattern of consumption distortion is deter-

mined by the comparison between the cost of the ticket and the peak of the distributions.

When neither condition in Proposition 2.3 holds, the pattern of consumption distortions

for the leisure type can be di�erent from the predictions of the proposition. For example,

if c < z, rationing instead of subsidy for the leisure type can be an optimal way of reducing

rent to the business type. However, the case in which leisure travelers are subsidized cor-

responds to the familiar ticketing pattern where leisure travelers buy discount tickets with
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lower or even zero refund while business travelers pay more for exibility. The conclusion

of Proposition 2.3 shows that greater uncertainty for business travelers, instead of greater

likelihood to have high valuations, is the key to understanding this pattern in terms of

monopoly pricing.

To illustrate, let us reconsider the example presented in the introduction. By de�ni-

tion, the surplus function is

S(k) =

8><
>:
1=2 if k 2 [0; 1)

k � 1
2
k2 if k 2 [1; 2]

0 if k 2 (2; 3],

and the rent function is

R(k) =

8>><
>>:

1
4
k2 if k 2 [0; 1)

1
4
� 1

2
(k � 1)(k � 2) if k 2 [1; 2]

1
4
(k � 3)2 if k 2 (2; 3].

According to Proposition 2.2, the business type buys a contract with refund kB = 1 and

the leisure type buys a contract with refund kL = argmaxk
1
3
S(k) � 2

3
R(k). Figure 1

plots 1
3
S(k) and 2

3
R(k). From Figure 1, we �nd that the optimal refund for the leisure

type is kL = 0. Note that the rent function is single-peaked at z = 1:5. This example

satis�es the �rst condition in Proposition 2.3 because the density functions are symmetric

around 1.5. Recall that the production cost is 1. Since c < z, Proposition 2.3 predicts

subsidy for the leisure type. Indeed, the optimal refund for the leisure type is 0. But since

the leisure type's valuation exceeds the cost with probability one, subsidy never actually

occurs. Optimal sequential contracts can be easily determined. Since the leisure type's

participation constraint IRL binds, from kL = 0 we have aL = 1:5. Since kB = 1, from

ICB;L we have aB = 1:75. This veri�es the optimality of the refund contracts given in the

introduction.

A few remarks are in order. First, in the optimal sequential contract, even business

type gets only partial refund. Since a sequential contract with full refund is formally

identical to buying from the spot market at a price equal the refund, this example shows

that it is generally not optimal for a monopoly seller to o�er only advance purchase discount

and induce the business type to buy from the spot market.5 Second, business type gets

5 Dana [1998] shows that consumers with more certain demand buy non-refundable advance tickets.
His result is based on the use of advance purchase discount in choosing production capacity by competitive
sellers. In his model, ticketing strategies are restricted to very simple forms, and consumers facing greater
demand uncertainty wait for the spot market instead of purchasing refund contracts as in our model.
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Figure 1

S(k)/3

2R(k)/31/6

1/4

0 1 3/2 2 3

zero surplus from the optimal sequential contract. This is a special result, because by

Lemma 2.1, business type should get a greater surplus than leisure type from any refund

contract. What happens is that leisure type's contract has zero refund, and since the two

types have the same mean, business type gets the same zero expected surplus from the

zero-refund contract of leisure type.6 Since ICB;L binds, business type gets zero expected

surplus from its partial-refund contract. Finally, in this example, the �rst-best outcome is

achieved by sequential screening, but this result is also special. If leisure type has a small

probability of reaching valuations on the interval [0; 1], then as long as such probability

is small enough so that 1
3
S(k) � 2

3
R(k) still reaches maximum at k = 0, zero-refund for

leisure type continues to be optimal. But in this case, there is over-production for leisure

type, and e�ciency of sequential screening disappears.

3. Sequential Mechanism Design: Continuous Type Case

The analysis in the last section illustrates some general characteristics of sequential price

discrimination. In this section, we show that these characteristics carry through in the

absence of the restriction to two ex ante types and the restriction to menus of refund con-

tracts. Moreover, we will discuss the issue of how type distribution and consumer learning

a�ect the design of sequential mechanisms, which cannot be done satisfactorily in the two-

type case. Finally, by solving for optimal sequential mechanisms for a number of simple

6 Technically, in the proof of Lemma 2.1, the function maxfkL; vg is not strictly convex.
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and intuitive parameterizations, we take a �rst step toward testing implications of the se-

quential screening model. Readers mostly interested in applications to price discrimination

issues may skip the technical treatment of the continuous type case and move directly to

after the proof of Lemma 3.4 below.

In this section, we assume that types are continuously distributed over T = [t; t],

with a density function f(t) and cumulative function F (t). Each type t is represented by

a distribution of valuations over [v; v], with a di�erentiable density function g(vjt) and

cumulative function G(vjt). Type information is known only to the consumer. Note that

we have assumed that the type space T is one-dimensional for simplicity, but this does not

reduce the complexity of the type space, because each type is a probability distribution

and can vary in arbitrary ways. In the applications later in this section, private type

information will be about the expected valuation or the degree of valuation uncertainty.

As in the standard mechanism problem, the revelation principle (see, e.g., Myerson

[1979], Harris and Townsend [1981]) allows us to take a �rst step toward simplifying the

problem of sequential mechanism design. We assume that the conditional distributions

g(vjt) have the same support for all t 2 T . This assumption makes it simpler to write

down the incentive compatibility constraints in the optimization problem.7 For each pair

of reports t and v, let y(t; v) be the probability of delivery and x(t; v) be the payment to the

monopolist. The monopolist solves the following sequential mechanism design problem:

max
x(t;v);y(t;v)

Z t

t

Z v

v

f(t)(x(t; v) � cy(t; v))g(vjt)dvdt

subject to constraints:

(IC2) 8t;8v; v0; vy(t; v) � x(t; v) � vy(t; v0) � x(t; v0);

(IC1) 8t; t0;

Z v

v

(vy(t; v) � x(t; v))g(vjt)dv �

Z v

v

(vy(t0; v) � x(t0; v))g(vjt)dv;

(IR) 8t;

Z v

v

(vy(t; v) � x(t; v))g(vjt)dv � 0;

7 The optimization problem does not get more complicated without the assumption of common support
as long as supports of di�erent types overlap su�ciently. More precisely, the condition is: for any type t
and any two valuations v and v0, there is a type t0 (possibly t itself) such that v and v0 are in the support
of type t0. If this condition holds, the optimization problem has incentive compatibility constraints for
each type involving all valuations in the union of the all supports.
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(R) 8t;8v; 0 � y(t; v) � 1:

The �rst set of constraint (IC2) is the incentive compatibility constraints in period two.

The second set (IC1) is the incentive compatibility constraints in period one. The third

set (IR) is the individual rationality constraints in period one. The last set of constraint

(R) requires the delivery rule to be feasible.8

Following the standard treatment of incentive compatibility constraints (see, e.g.,

Mirrlees [1971]), we can eliminate most of the period-two incentive constraints. De�ne

u(t; v) = vy(t; v)�x(t; v) to be the consumer's ex post surplus after he truthfully reports t

and then v. The following lemma shows that when the consumer draws a greater valuation,

he receives the good with a greater probability and has a greater consumer surplus. It

also amounts to \localization" of IC2 constraints. In searching for the optimal sequential

mechanisms, we need only impose local constraints on the sequential mechanisms to ensure

that all IC2 constraints are satis�ed. The proof the lemma is standard and therefore

skipped (see, e.g., Stole [1996]).9

Lemma 3.1. The period-two incentive compatibility constraints are satis�ed if and only

if (i)
@u(t;v)

@v
= y(t; v), and (ii) y(t; v) is non-decreasing in v for each t.

Our sequential mechanism design problem is related to static multi-dimensional price

discrimination models (e.g., McAfee and McMillan [1988]). In these problems, the con-

sumer is screened only once but he generally has more than one piece of private information

(e.g., willingness to pay for two di�erent goods), and the monopolist generally has more

than one instrument of price discrimination (e.g., quantities of the two goods sold to

the consumer). In our sequential mechanism design problem, the consumer is screened

8 Note that there is no period-two individual rationality constraint vy(t; v)�x(t; v) � 0 for all t and v.
This corresponds to situations where up-front deposits are not fully refundable or there are cancellation
fees at the consumption date. The absence of this constraint is important for our results. Within the class
of deterministic sequential mechanisms (menus of refund contracts), the ex post participation constraint
implies that in each refund contract the advance payment does not exceed the refund. One can show
that the monopolist cannot use the combination of advance payment and refund to price discriminate,
and therefore all types have the same contract. The menu of refund contract then coincides with the ex

post monopolist pricing. This conclusion does not hold if the monopolist is not restricted to deterministic
mechanisms, but the presence of the ex post participation constraint clearly reduces the monopolist's
discriminatory power.

9 We consider only sequential mechanisms with piece-wise di�erentiable delivery rule y(t; v).
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twice, but since the contract is signed in the �rst period, we can think of the sequen-

tial design problem as a static problem in the �rst period, where the consumer chooses a

contingent package of delivery probabilities and transfer payments. This static problem

is multi-dimensional in a sense because, although the consumer has one piece of private

information, the monopolist has many discrimination instruments in contingent packages

of delivery probabilities and transfer payments. One di�erence between our problem and

the static multi-dimensional problems is that in our problem the second-period screening

imposes IC2 constraints on the instruments that the monopolist can use, as stated in

Lemma 3.1, whereas in the static multi-dimensional problems, there is no such a priori

constraint.

With the interpretation of our sequential mechanism design problem as a static screen-

ing problem, it becomes natural to \localize" period-one incentive compatibility constraints

as in Lemma 3.1. De�ne U(t) =
R v
v
u(t; v)g(vjt)dv as the expected surplus of consumer of

type t and Y (t; v) =
R v
v
y(t; u)du as the cumulative delivery probability.10

Lemma 3.2. The period-one incentive compatibility constraints are satis�ed only if (i)

dU(t)
dt

= �
R v
v
y(t; v)@G(vjt)

@t
dv; and (ii)

R v
v

@Y (t;v)
@t

@g(vjt)
@t

dv � 0.

Proof. By the period-one incentive compatibility constraint,

U(t0) � U(t) +

Z v

v

(g(vjt0)� g(vjt))(vy(t; v) � x(t; v))dv:

Exchanging the roles of t and t0, we have

U(t0)� U(t) �

Z v

v

(g(vjt0)� g(vjt))(vy(t0 ; v)� x(t0; v))dv:

To obtain (i), we combine the above two inequalities, divide them by t0 � t (assuming

t0 > t), and let t0 converge to t. Then,

dU(t)

dt
=

Z v

v

@g(vjt)

@t
u(t; v)dv = �

Z v

v

@G(vjt)

@t
y(t; v)dv;

10 The reason to use the cumulative delivery probability is that optimal sequential mechanisms often
have piece-wise constant delivery rules, in which case �rst-period second-order condition written in deriva-
tives of the delivery probability does not capture the restrictions imposed by the incentive compatibility
constraints.
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where the last equality uses Lemma 3.1 and integration by parts. Condition (ii) can be

obtained similarly by combining the two inequalities, dividing them by (t� t0)2 and letting

t0 converge to t. Q.E.D.

Lemma 3.2 parallels Lemma 3.1. The �rst condition is a local period-one �rst-order

condition (FOC1), counterpart to the local period-two �rst-order condition (FOC2) in

Lemma 3.1 that
@u(t;v)
@v

= y(t; v); the second condition is a local period-one second-order

condition (SOC1), counterpart to the local period-two second-order condition (SOC2) in

Lemma 3.1 that y(t; v) is non-decreasing in v. However, the two lemmas di�er on an

important point: the two local conditions in Lemma 3.2 are necessary but not su�cient

for IC1, whereas the two conditions in Lemma 3.1 are both necessary and su�cient for

IC2. Section 4 comments on the di�erence.

It is well-known that multi-product price discrimination problems are complex when

consumers' private information is multi-dimensional (see Armstrong [1996] and Rochet and

Chone [1998]). In our model, the consumer's private information is a probability distribu-

tion and in general can vary quite arbitrarily. Little can be said about the properties of

optimal mechanism without making further assumptions. Since each type is a probability

distribution on [v; v], one natural way of imposing a structure on T is through FSD. In

this case, we say that type t is \higher" than t0 if G(vjt) � G(vjt0) for all v, and that T is

ordered by FSD if t > t0 implies that t is higher than t0 for any t; t0 2 T . Another way to

impose a structure on T is through a particular kind of mean-preserving spread where all

distributions G(vjt) cross at a single point z. In this case, we say that type t is \higher"

than t0 if G(vjt) � G(vjt0) for all v < z and G(vjt) � G(vjt0) for all v > z, and that T

is ordered by MPS if t > t0 implies that t is higher than t0 for any t; t0 2 T . As in the

two-type case, the analyses of these two cases will be similar.

Following the standard practice of mechanism design, we obtain a \relaxed" problem

by imposing the two local �rst-order conditions in Lemma 3.1 and Lemma 3.2 while ignor-

ing the second order conditions (and all but the lowest type IR constraint). By Lemma

3.2, we have

Z t

t

f(t)U(t)dt = U(t) �

Z t

t

Z v

v

(1� F (t))y(t; v)
@G(vjt)

@t
dvdt:
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De�ne

�(t; v) = v � c+
(1� F (t))

f(t)

@G(vjt)=@t

g(vjt)
:

The relaxed problem can be then written as maxy(t;v)
R t
t

R v
v
�(t; v)y(t; v)g(vjt)f(t)dvdt sub-

ject to 0 � y(t; v) � 1. The solution to the relaxed problem is given by y(t; v) = 1 for t

and v such that �(t; v) > 0 and 0 otherwise. There is no randomization.

If transfer payments x(t; v) can be found so that the solution y(t; v) to the relaxed

problem given above satis�es all IC1 and IC2 constraints, then the sequential mechanism

fy(t; v); x(t; v)g is optimal. But since we have ignored the local second-order conditions

in Lemma 3.1 and Lemma 3.2, and since the two conditions in Lemma 3.2 are generally

insu�cient for IC1, we need to impose some condition on y(t; v). The next result states

that in the case of FSD, if the solution y(t; v) to the relaxed problem is monotone in both

t and v, then transfer payments x(t; v) can be found such that the sequential mechanism

fy(t; v); x(t; v)g solves the original problem.11

Lemma 3.3. Suppose that T is ordered by FSD. If a delivery rule y(t; v) solves the relaxed

problem, and if y(t; v) is non-decreasing in t for all v and in v for all t, then there exist

transfer payments x(t; v) such that the sequential mechanism fy(t; v); x(t; v)g is optimal.

Proof. Since it solves the relaxed problem, y(t; v) is either 1 or 0 for any t and v. By

assumption, y(t; v) is non-decreasing in v for each t, so SOC2 implies that there exists

k(t) for each t such that y(t; v) = 0 if v � k(t) and y(t; v) = 1 if v > k(t). By FOC2,

the transfer payments can be written as x(t; v) = x0(t) if v � k(t) and x(t; v) = x1(t) if

v > k(t), with k(t) = x1(t) � x0(t). By Lemma 3.1, all IC2 constraints are satis�ed.

The expected surplus of a type t consumer is

U(t) = �x0(t) +

Z v

k(t)

(1�G(vjt))dv:

Taking derivatives and using FOC1, we obtain

�
dx0(t)

dt
�
dk(t)

dt
(1�G(k(t)jt)) = 0:

11 Matthews and Moore [1987] make the same observation in a multi-dimensional screening problem,
and call such mechanisms \attribute-ordered."
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The above condition gives a di�erential equation that can be used to �nd the function

x0(t), with the boundary condition that x0(t) satis�es

U(t) = �x0(t) +

Z v

k(t)

(1 �G(vjt))dv = 0:

It remains to show that the sequential mechanism fk(t); x0(t); x1(t)g de�ned above

satis�es all IC1 and IR constraints. The partial derivative of the expected utility U(t0; t)

of type t0 when he claims to be type t is given by

@U(t0; t)

@t
= �

dx0(t)

dt
�
dk(t)

dt
(1 �G(k(t)jt0)):

Since by assumption y(t; v) is non-decreasing in t for all v,
dk(t)

dt
� 0. Suppose t0 < t.

Then,

@U(t0; t)

@t
� �

dx0(t)

dt
�
dk(t)

dt
(1�G(k(t)jt)) = 0:

By integration we have U(t0; t) � U(t0). The same reasoning applies if t < t0. This

shows that the sequential mechanism fk(t); x0(t); x1(t)g satis�es all IC1 constraints. As

in Lemma 2.1, since all IC1 constraints are satis�ed and since IR holds for the lowest type

t, all IR constraints are satis�ed. Q.E.D.

In the other case, when T is ordered by MPS with all distribution functions passing

through a single point at z, the second term of �(t; v) is positive for v < z and negative for

v > z. Depending on whether the cost c is low or high relative to z, the proof of Lemma

3.3 needs to be adapted. The statement of Lemma 3.3 holds for the case of MPS with an

additional restriction on the solution to the relaxed problem, namely no under-production

if c < z and no over-production if c > z.

Lemma 3.4. Suppose that T is ordered by MPS with all distributions passing through a

single point at z. If c < z (resp. c > z) and y(t; v) solves the relaxed problem with no

under-production (over-production), and if y(t; v) is non-increasing (non-decreasing) in t

for all v and non-decreasing in v for all t, then there exists x(t; v) such that fy(t; v); x(t; v)g

is optimal.
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Proof. De�ne a sequential mechanism fk(t); x0(t); x1(t)g as in the proof of Lemma 3.3.

It su�ces to show that all IC1 constraints are satis�ed. Suppose c < z; the case of c > z

is symmetric. We have

@U(t0; t)

@t
= �

dx0(t)

dt
�
dk(t)

dt
(1 �G(k(t)jt0)):

By assumption y(t; v) is non-increasing in t for all v, so
dk(t)
dt

� 0. Moreover, since there is

no under-production, k(t) � c for all t. Then, if t0 < t, MPS implies G(k(t)jt0) � G(k(t)jt),

and
@U(t0; t)

@t
� �

dx0(t)

dt
�
dk(t)

dt
(1�G(k(t)jt)) = 0:

By integration we have U(t0; t) � U(t0). The same reasoning applies if t < t0. Q.E.D.

Before we present a few parameterizations where optimal sequential mechanisms can

be found by using Lemma 3.3 and Lemma 3.4, it is helpful to compare our model with the

standard one-dimensional nonlinear pricing problem. The coe�cient �(t; v) is analogous to

\virtual surplus" de�ned by Myerson [1981] in one-dimensional nonlinear pricing problems.

As in nonlinear pricing problems, the �rst part of �(t; v) corresponds to social surplus of

type t with valuation v, and the second part represents the distortion. The di�erence is

that in a nonlinear pricing problem, the second part contains only the \hazard rate" 1�F (t)
f(t)

,

but in our sequential screening problem, it also contains an additional term @G(vjt)=@t
g(vjt)

.12

The hazard rate measures the distortion due to eliciting truthful type information from t,

for any valuation v. Distortions are larger with a greater hazard rate, because whatever

surplus conceded to type t must also be given to all higher types. The term @G(vjt)=@t
g(vjt)

has a straightforward interpretation of \informativeness measure" (Baron and Besanko

[1984]), as it represents how informative the consumer's private type knowledge is about

his valuation. It is zero if type and valuation are independently distributed, and is large

if marginally di�erent types have very di�erent conditional distributions. Alternatively,

holding G(vjt) constant, we can think of v as a function of t, and the informativeness

12 Whenever Lemma 3.3 and Lemma 3.4 apply, the sequential mechanism design problem is reduced
to choosing refund (cuto� valuation) as a function of type. Virtual surplus can be instead de�ned as the
expected total surplus for a given type and a given refund. This alternative de�nition of virtual surplus
looks the same as in a standard one-dimensional nonlinear pricing problem. We choose to de�ne virtual
surplus for a pair of valuation and type, because it applies even when the conditions of Lemma 3.3 and
Lemma 3.4 do not hold.
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measure is equal to �@v
@t
. The measure then represents how marginally di�erently types

hit a �xed percentile G(vjt) at di�erent valuations. Distortions are larger with a greater

informativeness measure, because more rent must be conceded in order for marginally

di�erent types not to claim to be type t with valuation v. Finally, in a nonlinear pricing

problem, the usual second-order condition (analogous to SOC2 in Lemma 3.1) implies

downward distortion|consumers of every type except for the highest one are rationed.

Here, the direction of distortion is not necessarily downward because the ratio
@G(vjt)=@t

g(vjt)

can be either positive or negative. We will discuss the case of FSD and the case of MPS

separately.

For the case of FSD, let's �rst consider the following \additive" structure of conditional

distributions:

v = �t + (1� �)�t;

where t is distributed over a positive range, � 2 (0; 1), and �t is i.i.d. on the whole real line

(this guarantees that the conditional distributions have the same support) with density

h(�) and distribution H(�).13 The distribution of v conditional on t is given by

G(vjt) = H

�
v � �t

1� �

�
:

Note that G(vjt) satis�es FSD. The additive speci�cation has some nice properties that

make it an interesting benchmark case of �rst-order stochastic dominance. Consumers

face the same uncertainty regarding valuation but have private information about their

expected valuation for the good. In this linear case, the informativeness measure becomes

a global one|it equals � for all types and valuations. A greater � means that more

information is learned early rather than late and the consumer's private type knowledge is

more informative about valuation in that conditional distributions of valuations vary more

with type.

With this additive speci�cation, we have

�(t; v) = v � c�
�(1 � F (t))

f(t)
:

13 This formulation allows negative realized valuation. An example of negative valuation is a ticket-
holder who is sick and must be paid to travel. Since the monopolist cannot force consumption (free
disposal), in the pro�tmaximization problema distributionwith a range of negative valuations is equivalent
to one that has an atom at zero valuation with all the probability weights of the negative valuations. This
does not change the results below.
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Under the standard monotone hazard rate assumption that the hazard rate
1�F (t)
f(t)

is non-

increasing in t (see, e.g., Fudenberg and Tirole [1991]), we have that �(t; v) � 0 implies

�(t0; v0) � 0 for any t0 � t and v0 � v. The solution to the relaxed problem is monotone

in v and t separately. By Lemma 3.3, it solves the original problem. The optimal delivery

rule is therefore given by:

y(t; v) =

(
1 if v > c+

�(1�F (t))
f(t)

0 otherwise.

It is deterministic with a cuto� level for each type. Higher types have lower cuto�s. There

is no production distortion for the highest type. We summarize the �ndings in the following

proposition.

Proposition 3.5. Suppose that the conditional distribution functions have an additive

structure. Then, under the monotone hazard rate assumption, the optimal sequential

mechanism is deterministic with larger under-production distortions for lower types and

no under-production for the highest type.

Under-production distortion is larger when the consumer's private knowledge is more

informative, because the monopolist prefers rationing the good to giving higher types a

large informational rent. In the polar case where � = 0, type is completely uninformative of

valuation, and the monopolist achieves perfect discriminationwith a sequential mechanism.

The monopolist sells the product in period one at the expected valuation, which is the same

for all types, and allows the consumer to return the good for a refund equal to c. This

refund policy guarantees social e�ciency. In the other polar case where � = 1, the under-

production distortion is the largest. Clearly, the optimal sequential mechanism coincides

with usual monopoly pricing after the consumer learns his valuation.

A characteristic of the optimal menu of refund contract is that it is independent of the

speci�cation H(�) of the valuation shock �t. For �xed �, increasing the variance of �t means

that the consumer faces greater valuation uncertainty, yet this has no e�ect on the optimal

menu of refund contracts. What matters is not how much the consumer knows about his

valuation when he signs the contract, but how informative his private type knowledge is

about his valuation from the monopolist's point of view. The shock �t may be interpreted

as a demand shock. As long as it a�ects all consumer types independently so that it does
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not a�ect the informativeness measure, the size of this demand shock has no impact on

the optimal sequential mechanism.

It is instructive at this point to compare the optimal sequential mechanism with ex

post monopoly pricing. Whereas the sequential mechanism is deterministic with lower

cuto� levels of valuations for higher types, ex post monopoly pricing can be thought of

as a deterministic sequential mechanism with full refund and all types having the same

cuto� level. In general, the optimal sequential mechanism yields greater pro�ts than ex

post optimal monopoly pricing; the gains from sequential screening tend to be greater

when � is close to 0. If sequential mechanisms involve greater implementation costs than

ex post monopolist pricing, perhaps due to the cost of registering consumers in advance,

then one is less likely to observe sequential screening in environments where conditional

distributions of valuations vary substantially with type. Welfare comparison between se-

quential pricing and monopolist ex post pricing is ambiguous. In the monopolist pricing,

expected downward distortions are smaller for higher types because they are more likely to

reach above the same cuto� level. In the optimal menu of refund contracts, higher types

have lower cuto� levels so their expected downward distortions are even smaller compared

to lower types. However, since the optimal ex post monopoly price depends on both the

distribution of types and the conditional distributions of valuations, aggregate downward

distortion under ex post monopolist pricing can be either higher or lower than that under

the optimal sequential mechanism.

We can also extend Proposition 3.5 to a multiplicative speci�cation.14 Suppose that

v = t��1��t where t is distributed over a positive range, � 2 (0; 1), and �t is i.i.d. on the

whole positive real line (this guarantees that the conditional distributions have the same

support) with density h(�) and distribution H(�). This speci�cation is log-linear and can

be useful in constructing empirically testable implications. We have,

�(t; v) = v � c�
v�(1 � F (t))

tf(t)
:

As in the additive speci�cation, the greater � is, the more informative the type is as a signal

of valuation, but informativeness measure is not uniform across types or across valuations.

De�ne �(t) = 1�F (t)
tf(t)

and suppose that �(t) < 1 for all t. This is satis�ed as long as the

14 A speci�cation with a special distribution that works out similarly is G(vjt) = 1� exp (�v=t).
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range of t is su�ciently above zero, regardless of the value of �. The solution to the relaxed

problem is then

y(t; v) =

�
1 if v > c

1���(t)

0 otherwise.

If �(t) is non-increasing in t (monotone hazard rate is su�cient for this but clearly not

necessary), the above solution has the monotone property required by Lemma 3.3 and

therefore solves the original problem.

For the case of MPS, perhaps the most natural class of distributions is given by the

same mean plus a multiplicative shock. Suppose that

v = z + t�t;

where �t is i.i.d. on the whole real line (this guarantees that the conditional distributions

have the same support) with zero mean, density h(�) and distributionH(�). Without loss of

generality assume that t > 0, so that greater t means greater dispersion. The distribution

of v conditional on t is given by

G(vjt) = H

�
v � z

t

�
:

It is easy to see that the distributionsG(vjt) satisfy MPS and pass through the same point

at z, which is also the mean of the distributions. Consumers face the same expected valu-

ation but have private information about the degree of valuation uncertainty. Consumers

of higher types face greater valuation uncertainty. The informativeness measure is given

by (v� z)=t. The private type knowledge of higher types is less uninformative about their

valuation.

With the above speci�cation, we have

�(t; v) = v � c� (v � z)�(t);

where �(t) was de�ned in the previous example. Under the standard monotone hazard

rate assumption (su�cient but not necessary), �(t) is non-increasing in t. Suppose that

�(t) � 1. This is satis�ed if the range of t is su�ciently above zero, regardless of the

distribution F (t). Then, the solution to the relaxed problem is given by:

y(t; v) =

(
1 if v >

c��(t)z

1��(t)

0 otherwise.
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The assumption of �(t) � 1 guarantees that y(t; v) is non-decreasing in v for any t. It is

straightforward to show that the cuto� rule y(t; v) de�ned above has the properties required

by Lemma 3.4: if c < z, then y(t; v) has no under-production and is non-increasing in t

for all v; if c > z, then y(t; v) has no over-production and is non-decreasing in t for all v.

The following proposition follows.

Proposition 3.6. Suppose that the valuation distributions are given by the same mean

z plus a multiplicative shock and
1�F (t)
tf(t)

is non-increasing in t and less than 1. Then, if

c < z (resp. c > z), the optimal sequential mechanism is deterministic with greater over-

production (under-production) distortions for types with smaller valuation uncertainty and

no distortion for the highest type.

Proposition 3.6 mirrors Proposition 2.3. When consumers have the same expected

valuation but di�er in the valuation uncertainty they face, the pattern of consumption

distortion is determined by the comparison between the production cost and the expected

valuation. In airplane ticket pricing, the cost of ying an additional passenger is typically

small compared to the average willingness to pay when plane capacity is not binding. In this

case, all travelers except for those with the greatest valuation uncertainty are subsidized

and purchase advance tickets with refund lower than the cost of the ticket. Travelers with

greater uncertainty about their plans pay more in advance for greater exibility in terms

of higher refund.

Note that as in Proposition 3.5 the optimal menu of refund contract does not depend

on the speci�cationH(�) of the valuation shock �t. The variance of �t can be great or small,

but it has no e�ect on the optimal menu of refund contract as long as it is common to all

types. Also, the multiplicative speci�cation can be generalized by relaxing the assumption

that consumer type enters linearly with �t. Finally, as in Proposition 3.5, consumption

distortions (either downward or upward) are larger when the consumer's private type

knowledge is more informative about his valuation at the time of contracting. To see this,

recall that the informativeness measure is given by (v � z)=t. Greater informative type

knowledge can be represented by a leftward shift of the type distribution. Since �(t) is

decreasing in t, this amounts to an increase in �(t) for each t. The cuto� levels in the

solution to the relaxed problem decrease if c < z and increase if c > z. In either case, the

consumption distortions are smaller.
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4. Further Comments on Sequential Screening

The optimal sequential mechanisms characterized in previous sections are all deterministic.

Deterministic sequential mechanisms are important because they are easy to implement

in practice, through refund contracts, option contracts or cancellation fees. Deterministic

sequential mechanisms are also related to two-part tari�s in nonlinear pricing models, as

formally discussed in the mechanism design language by La�ont and Tirole [1986]. A

typical optimal mechanism in the literature is a direct mechanism rarely seen in practice;

instead, two-part tari�s are often used. Although any concave nonlinear tari� can be

implemented through a two-part tari�, the sequential feature of the consumer's decision in

two-part tari�s is purely arti�cial. One explanation for the popularity of two-part tari�s,

given by La�ont and Tirole, is that they are robust against shocks. Our model of sequential

screening, where the consumer self-selects twice, provides another explanation for the use

of two-part tari�s. The shock mentioned by La�ont and Tirole can be viewed as the

uncertainty faced by the consumer about his actual valuation at the time of contracting,

which later becomes his additional private information.

Deterministic sequential mechanisms are also easy to characterize. Under either FSD

or MPS, optimal deterministic mechanisms can be characterized with a local approach,

because the design problem is reduced to a single-dimensional problem of choosing refund as

a function of type. Unfortunately, neither FSD nor MPS is su�cient to imply that optimal

sequential mechanisms are deterministic. Without restricting sequential mechanisms to

menus of refund contracts, the local period-one constraints are generally insu�cient to

imply the global constraints. In our model of sequential screening, as in the standard

one-dimensional price discrimination literature, localization of the period-two incentive

compatibility constraints is guaranteed due to the standard \single crossing" condition (see,

e.g., Cooper [1984]) that a consumer with a greater realized valuation is willing to pay more

for an increase in delivery probability. This enables us to replace IC2 constraints by the

two local conditions in Lemma 3.1. However, the two local period-one incentive constraints

in Lemma 3.2 are not su�cient to imply global period-one incentive constraints.15 This

15
In the multi-dimensional price discrimination literature, McAfee and McMillan [1988] have identi�ed

a \generalized single crossing" condition that guarantees that local incentive compatibility constraints
imply global constraints. But their condition requires that the dimension of consumer's private information
exceed the number of monopolist' price discrimination instruments. This dimensionality condition is not
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insu�ciency results from the multi-dimensional nature of the sequential mechanism design

problem. To see this, note that from Lemma 3.3, under FSD a su�cient condition for the

IC1 constraints is that y(t; v) is non-decreasing in t for all v, but SOC1 states only that the

delivery rule y(t; v) is non-decreasing in t \on average," with the weights determined by

local changes in the conditional distributions of valuations with respect to type. Without

further restrictions on type space T besides stochastic dominance, the weights can change

with type arbitrarily, and there is little hope that what holds locally extends globally.16

When the delivery rule is not monotone increasing in type for each valuation, \bunching"

occurs both across valuations and across types. In this case, random delivery rules allow

�ne tuning by the monopolist.17 That the delivery rule need not be monotone in types is

similar to the conclusion in the multi-product price discrimination literature that quantity

or quality of each good need not be monotone when consumer demand characteristics are

one-dimensional but the number of price discrimination instruments is greater than one.

For example, Matthews and Moore [1987] show that if the monopolist in the model of

Mussa and Rosen [1978] o�ers di�erent levels of warranty as well as quality, more eager

consumers need not buy higher quality or receive higher warranty.

To conclude the discussion of general sequential mechanisms, we use a two-type exam-

ple of airplane ticket pricing to illustrate how random delivery rules can �ne tune sequential

screening in the absence of FSD or MPS. This example is closely related to the one in sec-

tion 2. As in section 2, the two types are interpreted as business type and leisure type, with

the business type facing greater valuation uncertainty in having a distribution of valuations

that second-order stochastically dominates that of the leisure type. The di�erence here is

that the business type has a smaller mean valuation than the leisure type. In particular,

suppose that there are three possible valuations v � 2, v, and v + 1, where v is a number

greater than 2. The leisure type has a deterministic valuation of v. The business type is

satis�ed in our model: at the time of contracting, the consumer's private information is one-dimensional,
but the monopolist has many instruments in contingent packages of delivery rule and payments.

16 It is possible to make stronger assumptions on the type space to reduce the dimension of the design
problem. For example, if in addition to satisfying FSD or MPS, the distribution functions G(vjt) are
separable in t and v in that there exist functions �(�), �(�) and (�) such that G(vjt) = �(v) +�(t)(v) for
all t and v, then one can use a variation of the standard local approach in nonlinear pricing problems to
characterize the optimal sequential mechanism.

17 Numerical examples of randomization in optimal sequential mechanism under FSD or MPS are
available from the authors.
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equally likely to draw valuation of v�2 and v+1, with a lower mean v� 1
2
. For simplicity

we assume that the production cost is zero. We will see how a tension arises under refund

contracts between exploiting the high mean valuation of the leisure type and the fat tail

of the business type, and how randomization can help �ne tune sequential discrimination.

First consider the following sequential mechanism with randomization. The seller

o�ers one contract with an advance price of v and zero refund, intended for the leisure

type, and another contract intended for the business type, with the same advance price

but with an option of receiving a partial refund of 1
2
v and then drawing a lottery with

probability 1
2
of getting the ticket. Note that if the business type purchases the partial

refund contract, it is strictly better o� not claiming the refund if it draws the higher

valuation of v + 1 (because v + 1 > 1
2
v + 1

2
(v + 1)), whereas if the leisure type buys the

partial refund contract, it is always indi�erent between claiming and not claiming the

refund (because v = 1
2
v + 1

2
v). The leisure type gets zero surplus from either contract

(constraints IRL and ICL;B both hold with equality), and the business type gets zero

surplus from the partial refund contract (IRB binds) and negative surplus from the no-

refund contract because it has a mean valuation smaller than the advance price of v (ICB;L

does not bind). Since both participation constraints bind, the seller's expected pro�ts are

� = fLv + fB(
1
4
(v � 2) + 1

2
(v + 1)), where fL and fB are the fractions of leisure type and

business type respectively.

Next consider any deterministic sequential mechanism. Since in the sequential mecha-

nism with randomization the seller extracts all surplus from the leisure type, for the pro�ts

from a deterministic sequential mechanism to exceed �, the business type must be induced

to use the ticket with probability one. But since the leisure type has a higher mean valu-

ation, it will also use the ticket with probability one. Since the participation constraint of

the business type must be satis�ed, the seller is essentially restricted to o�ering the ticket

at an advance price of v � 1
2
with no refund, with expected pro�ts of v � 1

2
. Therefore, if

v � 1
2
< �, or fL > v�2

v
, the optimal sequential mechanism must involve randomization.

The intuition behind this example can be understood as follows. It is straightforward

to argue that for a sequential mechanism to be optimal, the seller must sell to the leisure

type with probability one and the business type must be induced to use the ticket with

probability one when it draws the high valuation v + 1.18 But the question is whether to

18 Formally, any mechanism in which a type does not use the ticket with probability one when it draws
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sell to the business type when it draws the low valuation. If a menu of refund contracts

has to be used, the seller faces an all-or-nothing choice: she must either sell to the business

type with probability one, or sell only when it draws the high valuation. In the �rst case,

she is constrained to o�ering a single contract at an advance price of v� 1
2
and no refund.

Since the leisure type has a higher mean valuation of v, a rent equal to 1
2
is left to the

leisure type. This rent is large if fL is large. In the second case, the seller can achieve

separation by o�ering one contract at an advance price of v with no refund to the leisure

type and another contract at an advance price of v+1 with full refund to the business type.

But this means that she has to give up an expected surplus of 1
2
fB(v�2) from the business

type when it draws the low valuation. Randomization provides an extra margin for the

seller to operate at. By providing a partial refund of 1
2
v and a lottery to the business

type when it draws the higher valuation, the seller leaves no rent to the leisure type and

extracts half of the surplus from the business type when it draws the low valuation.

5. Concluding Remarks

The closest work to the present study is by Miravete [1996], who also considers the mo-

nopolist's pricing problem when consumers face demand uncertainty. Miravete [1997] tests

empirical implications of his model. In contrast with this paper, he assumes continuous

demand functions. This allows him to compare ex ante two-part tari�s (where consumers

choose a tari� based on their expected demand) and ex post two-part tari�s (after con-

sumers learn their actual demand). He shows that expected pro�ts are higher under an ex

post tari� if the variance of the ex ante type distribution is large enough. The generality of

his results is compromised by the restriction to two-part tari�s, because ex ante two-part

tari�s are generally not optimal. In the present paper where unit demand is assumed, the

optimal ex post tari� degenerates to standard monopolist pricing, and can be thought of as

a uniform sequential contract with full refund for all ex ante types. As a result, in our model

ex post mechanisms are dominated by sequential mechanisms. Furthermore, our results

the highest valuation is not optimal. To prove this by contradiction, suppose that the probability of getting
the ticket is p < 1 for some type after drawing its highest possible valuation. Then, the seller can increase
this probability to one and at the same time increase the corresponding payment from the type by v(1�p).
This will not a�ect the participation or the incentive constraint of any type, but will increase the pro�ts
by v(1 � p) when the buyer happens to be this type and happens to draw the highest valuation.
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(Proposition 3.5 and Proposition 3.6) indicate that pro�t gains from using a sequential

mechanism depend not only on the type distribution, but on how informative consumers'

initial private knowledge is about their valuations: if di�erent types of consumers have

very di�erent conditional distributions of valuations, then sequential mechanisms do not

yield much greater expected pro�ts than ex post monopolist pricing.

Our sequential mechanism design problem is related to the problems of dynamic price

discrimination (e.g., Baron and Besanko [1984], La�ont and Tirole [1988, 1990]). An

example of these problems is a monopolist facing a consumer making repeated purchases.

Typically, consumers have only one piece of private information and it does not change over

time. These problems focus on the implications of the monopolist's ability to commit. With

no change in consumers' private information over time, the optimal dynamic mechanism

under commitment is static: it simply replicates the optimal static screening contract

in every period. In contrast, our sequential screening problem is driven by the demand

uncertainty, and consumption decisions are made based on new information.

Throughout the paper we assume that the monopolist can commit to a sequential

mechanism and examine how a sequential mechanism can be used by the monopolist to

extract maximal surplus. If the monopolist cannot commit to a sequential mechanism,

time-inconsistency problems as mentioned by Coase [1972] arise. In our problem of se-

quential screening, the monopolist may be tempted to renege both before and after con-

sumer learn their valuation. Lack of ability to commit to a sequential mechanism reduces

the monopolist's power to discriminate, which may explain why sometimes these types

of mechanisms are not observed in practice. Incorporating the commitment issue to the

design of sequential mechanisms is an interesting topic for further research.

Although menus of refund contracts arise naturally from price discrimination under

consumer learning, they can be o�ered by producers for other reasons. One reason worth

mentioning is that a menu of refund contract may allow a producer to learn about �nal

consumer demand early on. This information can be valuable for production planning

purposes. Consider the airplane ticket pricing example in the introduction. The fraction of

business travelers may be unknown to the ticket seller, but it is revealed by travelers' choices

of refund contracts. This information is valuable to the seller if a production capacity

decision must be made before the �nal demand is realized. Although this paper has not
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explored the issue of capacity constraint in the presence of sequential price discrimination,

it seems a promising line of research.
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