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Abstract

We study the impact for mechanism design of the possibility that some participants

are unobservant of the rules associated with the trading mechanism but are otherwise

rational. Since “deviations” by the mechanism designer are not observed by these par-

ticipants the nature of the “equilibrium” of the design game changes, as do equilibrium

mechanisms. We study the symmetric, regular case of the independent private value

auction environment, and show how to characterize an interesting equilibrium outcome

for the game by optimizing over reduced form direct mechanisms. This gives rise to

a surprisingly simple mechanism that we call an equal priority auction. Observant

bidders with intermediate valuations receive offers with the same probability as un-

observant bidders, even though observant buyers will accept the offers for sure, while

unobservant bidders might not.
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1 Introduction

There is an acronym that floats around the internet - TL;DR - that explains why no one reads

your email messages. It means “too long, didn’t read.” The long translation we adapt in this

paper is “there is no point in reading your message, because I already know everything that’s

relevant to me.” We refer to this as “rationally unobservant.” It sounds like an oxymoron,

but is meant to capture the idea that one can be unobservant and rational at the same time.

The message of this paper is that this kind of behavior can impact trading mechanisms.

We aren’t the first to notice that traders are sometimes unobservant. The marketing lit-

erature has documented this behavior of buyers when they make purchase decisions. The

simplest trading mechanism of all is a price commitment. Dickson and Sawyer [1990] asked

buyers in supermarkets about their price knowledge as they were shopping. Even when the

item being placed in their basket had been specially marked down and heavily advertised,

25% of consumers did not even realize the good was on special. Marketing has a problem

when prices can’t influence buyer behavior because buyers may be unobservant.

We are interested in more than prices; we want to know how trading mechanisms are

impacted by buyers who are possibly unobservant but are always rational. We consider

what is probably the best understood trading problem of all - the independent private value

auction. Having rationally unobservant buyers who don’t observe the seller’s commitment

turns the constrained optimization problem of mechanism design into a game of imperfect

information where deviations by the seller may not be observed by some buyers.

We consider the symmetric, regular case of the independent private value auction envi-

ronment in this paper. Our formal analysis is based on two arguments. The first is that in

an environment with unobservant bidders, standard auction mechanisms can’t be supported

as equilibrium even though the seller would much prefer to use them. The fault lies with

the seller who can’t resist the temptation of exploiting rationally unobservant bidders. To

see why, suppose the seller wants to use a second price auction with optimal reserve. This

means that observant bidders read the auction rules, as they might on eBay, then realize they

should bid their valuations. Unobservant bidders don’t read the rules, so they only anticipate

a second price auction. Acting on their expectations, they also bid their valuations.
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What makes this break down is the fact that if the seller changes the auction rules, the

unobservant won’t realize it, and will continue to bid their valuations no matter what the

seller does. A simple deviation can extract the surplus of the unobservant. For example, the

seller can ask bidders to attach a coupon code to their bid. The coupon code isn’t secret, it

is plainly visible in the description of the bidding rules. A bidder who reads the new rules

will see the coupon code and attach it to their bid. A bidder who doesn’t read won’t add

the code. The new mechanism commits to a second price auction for bids submitted with

a code, but treats bids with no code attached as if it were a first price auction. In other

words, if the highest bid is submitted by an unobservant bidder, the seller will commit to

make them an offer equal to their bid, instead of offering them the second highest bid. This

breaks the equilibrium, because it should be expected by rational unobservant bidders.

The second argument involves how the seller should respond. The seller will want to sell

to the unobservant bidders when observant bidders have low valuations. So the natural idea

would be to have an auction, then if bids are too low, make an offer to the unobservant. But

observant bidders don’t have to bid. They can pretend to be unobservant. Since they are

observant, they know when the seller will make an offer to the unobservant and what that

offer will be. To prevent observant bidders from pretending to be unobservant, the seller has

to keep the offer to unobservant bidders higher than she would like it to be.

The seller then faces a trade off - keep the offer high and fully separate the observant

from the unobservant, or lower the take it or leave it offer and allow some of the observant

bidders to pool with the unobservant. We show that the latter is what happens in equilib-

rium, which is where the equal priority phrase comes from in our title. Intuitively, pooling

sacrifices auction revenue from observant bidders, but this is minuscule when the seller is

fully separating them from unobservant bidders. The revenue gain from lowering the offer

to unobservant bidders then makes pooling profitable.

We show that under a plausible restriction - unobservant buyers convey no information

to sellers - the equilibrium outcome is characterized by an optimal equal priority auction.

Pooling happens at intermediate valuations, because it is too costly to include in the equal

priority pool observant bidders with high valuations, and unnecessary to include those with

low valuations. The auction treats observant bidders with intermediate valuations in exactly
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the same way as unobservant bidders. When the auction attempts to trade with them, it

makes a take-it-or-leave-it price offer that is independent of any messages they may have

sent. When bidders have very high or very low valuations, the seller treats messages as bids.

If the seller decides to sell to one of these bidders, she will make an offer equal to what can

be thought of as the second highest bid she has received - much as she would in a standard

auction.

One appealing feature of the independent private value auction problem for mechanism

design is that finding the revenue maximizing mechanism can be reduced to a problem of

solving a maximization problem with a single parameter - the reserve price. The equilibrium

mechanism with rationally unobservant bidders can be found by solving a problem with

four parameters - a reserve price, two cutoff valuations that define observant bidders treated

equally as unobservant bidders, and a price offer to them. This is a harder problem, but still

computationally tractable. The numerical solutions we have found in simple environments

suggest that fixed price trading is quite common. In fact, it is easy to see without any

calculation that if every bidder is equally likely to be observant or unobservant, the trade

will occur at a fixed price (with no auctions) more than half the time. This may be an

explanation for why auctions aren’t particularly common in many trading platforms. Even

on trading platforms on which auctions are used, such as eBay, there are “buy it now”

options where trading takes place at a fixed price.1

An equal priority auction is an indirect mechanism that we use to replicate the equilib-

rium outcome in the unobserved mechanism design game where unobservant bidders babble.

Observant bidders with intermediate valuations and unobserved bidders are treated the same,

but of course observant bidders know the auction rule while unobservant ones don’t. If there

is a hidden link on a website that gives access to the auction, then observant bidders are

free to click on the link but unobservant ones wouldn’t know how to do it. It doesn’t matter

to the seller or any bidder whether or not observant bidders with intermediate valuations

click on the link to participate in the auction. This has an important implication. An

econometrician who tries to recover distributions of valuations based on bids placed in the

1The environment on eBay doesn’t fit our model exactly because bidders arrive randomly. Buy it now
options disappear on eBay once a bidder with a low valuation submits a bid, while auctions continue to
occur.
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auction would get biased estimates, because intermediate valuations might be missing from

the bidding data. Our model of unobserved mechanisms is admittedly crude, and we only

look at babbling equilibria here, but equal priority auctions make empirically relevant points

about the way rationally unobservant agents impact trading mechanisms.

2 Unobserved Mechanism Design

There are n potential buyers of a single homogeneous good. Each buyer has a privately

known valuation w that is independently drawn from the interval [0, 1]. We assume that all

valuations are distributed according to some distribution F with strictly positive density f .

Buyers’ payoff when they buy at price p is given by w − p. The seller’s cost is zero, so the

profit from selling at price p is just p.

Define

π(w) = (1− F (w))w

as the revenue function from a take-it-or-leave-it offer w to a buyer. Following the standard

auction literature, we also define

φ(w) = w −
1− F (w)

f(w)

as the virtual valuation function.

Buyers are either observant or unobservant. We use τi as the “information type” of

buyer i, with τi = ǫ if i is observant, and τi = µ if i is unobservant. Unobservant buyers

communicate with the seller using a message space Mµ - assumed to be a compact metric

space which embeds [0, 1], the set of values. Informed buyers have access to Mµ, and to a

distinct message space Mǫ. We’ll assume that Mǫ is also compact and metric, and embeds

[0, 1]. The important assumption here is that the seller can tell whether or not a message

comes from Mǫ. So when a buyer sends a message in Mǫ, the seller knows that they are

observant. If a buyer’s messages comes from Mµ, the seller can’t tell whether the buyer is

observant or unobservant.2

2In section 4, we discuss a general framework of unobserved mechanism design where observant and
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The seller writes an algorithm that processes the messages sent by all the buyers, then

chooses which buyer to make an offer to. Unobservant buyers do not see the rules the seller

is using to convert messages to offers. Informed buyers are fully aware of these rules. The

seller and each of the buyers believes that each of the others is unobservant with probability

α ∈ (0, 1) independent of their valuation. All buyers, observant or unobservant, know that

if the seller makes them an offer and they accept it, then the seller is committed to transact

with them at the price. Since any offer can be rejected, this is quite different from standard

mechanism design where a mechanism produces an allocation. It turns our problem into a

game where the payoffs in the game are endogenously determined by the seller. Further,

when an offer is rejected, the process ends without trade.3

Denote M = Mµ ∪ Mǫ. Let qi : M
n → [0, 1] be an integrable function that gives the

probability with which an offer is made to bidder i for every possible profile of messages from

buyers. A profile of these functions is feasible if

∑

i

qi (b1, . . . , bn) ≤ 1

and qi (b) ≥ 0 for every profile b = (b1, . . . , bn) ∈ Mn. Next, let △ [0, 1] be a set of probability

measures on the interval of values such that every bounded function is integrable, and let Pi :

Mn → △ [0, 1] be an integrable function that describes the distribution of price offers buyer

i receives conditional on receiving an offer. If we use the notation {P, q} = {(Pi)
n

i=1
, (qi)

n

i=1
},

then the seller’s mechanism or algorithm is just a feasible pair {P, q}. Let Γ be the set of all

feasible mechanisms.

A strategy rule σi for buyer i is a pair of measurable functions {σǫ
i , σ

µ
i } with σǫ

i : [0, 1]×

Γ → M and σµ
i : [0, 1] → Mµ that specifies what messages the buyer will send for each of

their valuations conditional on whether the buyer observes the seller’s mechanism.4 Write

σ = {σǫ, σµ} = {(σǫ
i )

n

i=1
, (σµ

i )
n

i=1
}. We’ll use the usual notation {σǫ

−i, σ
µ
−i} to refer to the

unobservant buyers use the same message space. We believe that any equilibrium outcome constructed here
can be replicated in the general framework through randomization over mechanisms.

3In section 4, we discuss how to relax this assumption and allow the seller’s algorithm to make multiple
offers.

4To save notation, we consider only pure strategies by observant and unobservant buyers. The expressions
and definitions introduced below can be easily extended to mixed strategies.
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strategy rules used by the other players. These strategy rules depend on the other buyers’

information types which buyer i doesn’t know. When taking expectations, it is over both

profiles of the other buyers’ valuations v−i and profiles of their information types τ−i.

Let R (γ, σ) be the expected revenue for the seller from mechanism γ = {P, q} when

buyers use strategy rules given by σ. This is given by

R(γ, σ) = Ev,τ

[

n
∑

i=1

qi(σ)

∫

pi≤vi

pi dPi(pi; σ)

]

,

where the expectation is taken over profiles of buyers’ valuations v and their information

types τ .

The imperfect information game G is defined to be the extensive form game of imperfect

information in which the seller first commits to some γ ∈ Γ, then the buyers send messages

to the seller that depend on γ only if they are observant. The game G implicitly depends

on the probability α with which buyers are unobservant. We omit the dependence of G on

α for notational brevity.

Our solution concept uses a refinement of Bayesian Nash equilibrium. Neither perfect

Bayesian nor sequential equilibrium work in our context because the seller can use mecha-

nisms which preclude any kind of sequential rationality. For example, the seller could deviate

to a mechanism in which all observant bidders are asked to submit bids with an offer with

price 0 made to the buyer who submits the highest bid strictly less than 1. This would

be a silly deviation. Yet no matter what beliefs the players hold about each other or what

strategies they play, either some buyer will have a profitable deviation, or some buyers will

not be able to find best replies.5

In order to describe the refinement, we need the following definitions:

Definition 1 The continuation game G (γ, σµ) is the Bayesian game played by all the ob-

servant buyers where the seller’s uses mechanism γ = {P, q} and the unobservant buyers use

strategy σµ. A profile of strategies ζi : [0, 1] → M used by each observant bidder i is called a

5We thank a referee for pointing this out to us.
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continuation equilibrium of G (γ, σµ) if for all i with τi = ǫ, vi ∈ [0, 1], bi ∈ M,

Ev−i,τ−i

[

qi
(

ζi(vi), ζ−i(v−i), σ
µ
−i(v−i)

)

∫

max {vi − pi, 0} dPi

(

pi; ζi(vi), ζ−i(v−i), σ
µ
−i(v−i)

)

]

≥ Ev−i,τ−i

[

qi
(

bi, ζ−i(v−i), σ
µ
−i(v−i)

)

∫

max {vi − pi, 0} dPi

(

pi; bi, ζ−i(v−i), σ
µ
−i(v−i)

)

]

.

Using the above continuation idea, we can give a simple definition of Bayesian equilibrium.

Definition 2 The mechanism γ = {P, q} along with strategies {σǫ, σµ} constitutes a Bayesian

equilibrium for the game G, if R (γ, σǫ, σµ) ≥ R (γ̃, σǫ, σµ) for all γ̃ ∈ Γ; σǫ(·, γ) is a contin-

uation equilibrium for G (γ, σµ); and for all i such that τi = µ, vi ∈ [0, 1], bi ∈ Mµ,

Ev−i,τ−i

[

qi
(

σµ
i (vi) , σ

ǫ
−i (v−i, γ) , σ

µ
−i (v−i)

)

∫

max {vi − pi, 0} dPi

(

pi; σ
µ
i (vi) , σ

ǫ
−i (v−i, γ) , σ

µ
−i (v−i)

)

]

≥ Ev−i,τ−i

[

qi
(

bi, σ
ǫ
−i (v−i, γ) , σ

µ
−i (v−i)

)

∫

max {vi − pi, 0} dPi

(

pi; bi, σ
ǫ
−i (v−i, γ) , σ

µ
−i (v−i)

)

]

.

As usual this isn’t a very restrictive solution concept since strategy rules used by the

observant don’t have to be a continuation equilibrium away from the equilibrium path after

γ is offered. As we can’t use solution concepts that impose sequential rationality off the

equilibrium path, we use the following refinement:

Definition 3 The triple {γ, σǫ, σµ} is a U-equilibrium if it is a Bayesian equilibrium and in

addition there does not exist an alternative mechanism γ̃ and a continuation equilibrium ζ

for G (γ̃, σµ) such that

R (γ̃, ζ, σµ) > R (γ, σǫ, σµ) (1)

Since this is an unusual equilibrium concept, a few comments are in order. First, note that

the concept of a continuation equilibrium depends on fixed behavior of the unobservant. This

is because the unobservant don’t know the mechanism that is being used off the equilibrium

path.

Second, the seller’s deviations to alternative mechanisms as described in (1) are restricted

to those for which some continuation equilibrium exists. This avoids the problem when the

seller offers a mechanism for which there is no continuation equilibrium among the observant.
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If the message spaces Mǫ and Mµ are both finite, then we could use perfect Bayesian

equilibrium as part of our solution concept since a continuation equilibrium always exists.

In this case, the on-path strategies in a U-equilibrium would always be part of a perfect

Bayesian equilibrium. The sense in which our solution concept is stronger is that it selects

out the seller-optimal perfect Bayesian equilibrium.

2.1 Direct mechanisms

We do not have a full characterization of all U-equilibria. However, we can characterize a

special U-equilibrium called babbling equilibrium, where unobservant buyers send messages

that are uninformative of their valuations, that is, σµ
i (w) = σµ

i (w̃) for all i and valuations

w, w̃.6 In any U-equilibrium, the behavior of the unobservant is known and fixed, and the

rest of the equilibrium can be found by finding the seller’s best reply to this behavior.

Since the seller’s commitment is seen by the observant buyers we can find this best reply

using the revelation principle and solving for an optimal mechanism. The definition of U-

equilibrium then requires the behavior of the unobservant to be a best reply to the optimal

mechanism. This is generally a difficult fixed-point problem. For babbling equilibrium,

however, the problem can be solved by restricting to direct mechanisms that ignore messages

from unobservant buyers.

To do so we need to add some notation to describe a symmetric direct mechanism. In

what follows the notation m always means the number of unobservant buyers (i.e., buyers

who send messages in Mµ). We reorder n buyers such that the first n − m of them are

observant; the orders among the observant and among the unobservant are arbitrary. For

each v = (v1, . . . , vn) ∈ [0, 1]n, and for each i = 1, . . . , n−m, let

ρim(v) = (vi, v2, . . . , vi−1, v1, vi+1, . . . , vn−m, vn−m+1, . . . , vn};

that is, ρim(v) switches the positions of v1 and vi. Now we have

6We haven’t been precise enough about the space of feasible mechanisms to prove existence. We partially
address this issue in Theorem 1 below.
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Definition 4 A symmetric direct mechanism δ is a collection of functions

{

(qǫm, p
ǫ
m)

n−1

m=0
, (qµm, p

µ
m)

n

m=1

}

where qǫm, p
ǫ
m : [0, 1]n → [0, 1] for each m = 0, . . . , n− 1, and qµm, p

µ
m : [0, 1]n → [0, 1] for each

m = 1, . . . , n, satisfying

• (qτm(v), p
τ
m(v)), τ = ǫ, µ, are invariant to (vn−m+1, . . . , vn);

• (qǫm(v), p
ǫ
m(v)) are invariant to permutations of (v2, . . . , vn−m), and (qµm(v), p

µ
m(v)) are

invariant to permutations of (v1, . . . , vn−m);

• for all v and for all m,

n−m
∑

i=1

qǫm
(

ρim (v)
)

+mqµm(v) ≤ 1. (2)

The function qµm (v) gives the probability with which an offer pµm(v) is made to an un-

observant buyer given that there are m unobservant buyers and the profile of valuations is

v = {v1, . . . , vn}. The function qǫm (v) gives the probability with which an offer pǫm(v) is made

to buyer 1 given that there are m unobservant buyers and the valuation profile of buyers

i = 2, . . . , n is v−1 = {v2, . . . , vn}. Since unobservant buyers babble, we require the allocation

and the offer functions of both the observant and the unobservant to be independent of the

valuations of the latter. Symmetry requires the allocation and the offer functions of unobser-

vant buyers to be invariant to permutations of the valuation profile of the observant, and the

allocation and the offer functions of each observant buyer to be invariant to permutations

of the valuation profile of the other observant buyers. Since ρim (v) switches the positions of

the first element of v and its i-th element, the sum
∑n−m

i=1
qǫm (ρim (v)) gives the probability

that the offer is made to one of the first n −m elements of v. Then (2) ensures that when

the observant buyers have valuations given by the first n−m valuations in v, the probability

with which the good is offered to one of them plus the probability that it is offered to one

of the unobservant buyers is less than or equal to 1.

We can use the above definitions to build something that looks exactly like a traditional
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reduced form mechanism. The probability with which an observant buyer whose valuation

is w receives an offer when there are m unobservant is

Qǫ
m(w) = Ev [q

ǫ
m(v)|v1 = w] .

Similarly

P ǫ
m(w) = Ev [q

ǫ
m(v)p

ǫ
m(v)|v1 = w]

is the expected price the observant bidder with valuation w would pay. Note that we have

assumed that in any direct mechanism an observant buyer accepts the offer he receives with

probability one. The is no max operator for observant buyers. This assumption is justified

because observant buyers know the mechanism.

For each m = 0, . . . , n− 1, let B(m;n− 1, α) be the probability that there are m unob-

servant buyers among the n− 1 others. This probability is given by

B(m;n− 1, α) =





n− 1

m



 (1− α)n−1−mαm.

Now by taking expectations over m we have the usual reduced form functions:

Qǫ (w) =

n−1
∑

m=0

B(m;n− 1, α)Qǫ
m (w) ,

P ǫ (w) =

n−1
∑

m=0

B(m;n− 1, α)P ǫ
m (w) .

We then have

U ǫ (w) = wQǫ (w)− P ǫ (w) .

At this point, we inherit all the usual results from mechanism design in iid environments

for each of the observant buyers. In particular, if the mechanism δ is incentive compatible

with respect to valuations, the payoff to an observant buyer with valuation w can be written

as

U ǫ (w) =

∫ w

0

Qǫ (x) dx, (3)
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with Qǫ(·) non-decreasing.7

The (interim) payoff to an unobservant bidder with valuation w is

Uµ (w) =
n−1
∑

m=0

B(m;n− 1, α)Ev

[

qµm+1(v)max
{

w − pµm+1(v), 0
}]

.

Definition 5 The mechanism δ is incentive compatible for observant buyers if (3) holds,

Qǫ(·) is non-decreasing and

U ǫ (w) ≥ Uµ (w)

for every w ∈ [0, 1].

From standard arguments and properties of the binomial distribution, it is straightfor-

ward to show that the seller’s revenue from any incentive compatible direct mechanism δ is

given by

R(δ) = n(1 − α)

∫

1

0

Qǫ (w)φ(w)f(w)dw +
n

∑

m=1

B(m;n, α)Ev [mqµm(v)π (pµm(v))] , (4)

where the first term is the revenue from observant buyers, and the second term is the revenue

from the unobservant buyers. The following result provides a two-way relationship between

the optimal direct mechanism and a U-equilibrium of the unobserved mechanism design

game with babbling by unobservant buyers.

Theorem 1 Fix a game of unobserved mechanisms G. For any babbling equilibrium {γ, σ},

there is an incentive compatible and symmetric direct mechanism δ∗, with R(δ∗) = R(γ, σ)

and R (δ∗) ≥ R (δ) for every incentive compatible direct mechanism δ. Conversely, any

incentive compatible and symmetric direct mechanism δ∗ that maximizes R (δ) can be used

to construct a babbling equilibrium (γ, σ) such that R(γ, σ) = R(δ∗).

The proof of this is straightforward. We provide a sketch of the argument here. Fix a

babbling equilibrium {γ, σ} in the game G with message spaces Mǫ and Mµ. The continu-

ation equilibrium σǫ(·, γ) in the game {γ, σµ} on the equilibrium path is just an equilibrium

7See, for example, Myerson (1981). We have assumed U ǫ(0) = 0 for simplicity. This is usually not part of
requirement for incentive compatibility, but clearly necessary for any revenue maximizing direct mechanism.
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of a standard Bayesian game among the observant buyers. The seller doesn’t actually care

what the unobservant buyers say in an equilibrium in which their messages don’t convey

information about their types - all he needs to keep track of is whether or not a buyer’s

message was in Mµ. So it doesn’t matter here whether unobservant buyers use asymmetric

strategies. On the equilibrium path, some observant buyers may use a strategy σǫ
i (vi, γ) that

mimics unobservant buyers for some valuations vi. But by the standard revelation principle,

there is an incentive compatible direct mechanism δ in which observant buyers report their

information type and valuations truthfully, and gives the same expected revenue as γ. This

direct mechanism δ might not be symmetric. However, it is well known that in the sym-

metric, independent private values environment, an asymmetric mechanism can’t produce a

higher expected revenue than a symmetric one. The definition of U-equilibrium allows the

seller to choose the continuation equilibrium for the fixed strategy of unobservant buyers

σµ. This means that there is a symmetric incentive compatible mechanism δ∗ that achieves

the equilibrium revenue R(γ, σǫ, σµ) and is an optimal incentive compatible mechanism with

respect to observant buyers.

The reverse direction follows by construction. Fix any message bµ ∈ Mµ. Let σµ
i (vi) = bµ

for all i and all vi ∈ [0, 1]. By assumption Mǫ embeds [0, 1] so we can find a subset of Mǫ and

a bijection βǫ between this subset and [0, 1]. For each i and vi ∈ [0, 1], let σǫ
i (vi, δ

∗) = βǫ(vi),

and σǫ
i (vi, γ) = bµ for all γ 6= δ∗. Then, {δ∗, σǫ, σµ} is a U-equilibrium of G.

3 Equal Priority Mechanisms

For the remainder of the paper, we restrict attention to distribution functions such that

π(w) is strictly concave. We have φ(0) < 0 and φ(1) = 1, and so φ(w) crosses 0 at least

once. Since π′(w) = −φ(w)f(w), concavity of π(·) implies that φ(w) crosses 0 only once.

Let the crossing point be r∗; this is also the unique maximizer of π(w). Furthermore, φ(w)

is strictly increasing in v for w ≥ r∗.8 The valuation r∗ represents the optimal reserve price

8At any w ∈ (0, 1), if f(w) is non-decreasing, then by definition φ(w) is strictly increasing; if f(w) is
strictly decreasing at w and if φ(w) ≥ 0, then φ(w) is strictly increasing in w, because concavity of π(w)
implies that φ(w)f(w) is strictly increasing in w.
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in a standard auction, regardless of the number of buyers.9 That is, when α = 0, the seller’s

outside option is always 0, so the reserve price is such that the virtual valuation of the buyer

with w at the reserve price is equal to the seller’s outside option.

Our main result is that for valuation distributions such that π(·) is concave, the outcome

of a U-equilibrium of the game G where unobservant buyers babble corresponds to an optimal

“equal priority mechanism.” We’ll establish the main result in two parts. First we’ll describe

the set of equal priority mechanisms, and then the one that gives the seller the highest

expected revenue. Later we’ll show how to verify that the seller cannot do strictly better

among all direct mechanisms.

An equal priority mechanism is fully characterized by four numbers, a “reserve price”

r, a take-it-or-leave-it offer t, and the upper and lower bound w and w of an interval of

buyer valuations, satisfying r ≤ w ≤ w. Unobservant buyers keep silent. Let m be the

number of buyers who keep silent, and k be the number of reported valuations in the interval

[w,w]. The mechanism treats the m unobservant buyers and the k observant buyers with the

same allocation priority; we refer to them as “equal priority pool.” Priorities of observant

buyers with reported valuations above w and those with valuations below w are equal to the

valuations themselves, with the former all higher and the latter all lower than the m + k

buyers in the equal priority pool. In words, the allocation and offers in an equal priority

mechanism are determined in the following way:

• When the highest reported valuation is less than r: no offer is made to the buyer; for

each m ≥ 1, with probability 1/m an offer t is made to each unobservant buyer.

• When the highest reported valuation is between r and w: if m = 0, the buyer is made

an offer equal to the maximum of the second highest reported valuation and r; ifm ≥ 1,

no offer is made to the buyer, and instead with probability 1/m, an offer t is made to

each unobservant buyer.

9In much of the auction literature, the seller has the fixed outside option of keeping the good. The virtual
valuation function φ(w) is assumed to be strictly increasing to simplify the analysis (the “regular case” in
Myerson (1981)). In our model, the seller’s outside option in an auction with observant buyers is to give it
to an unobservant buyer with a take-it-or-leave-it offer, and is endogenous. We do not need to assume that
φ(w) is strictly increasing for valuations below r∗.
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• When the highest reported valuation is between w and w: if m + k = 1, the buyer is

made an offer equal to the maximum of the second highest reported valuation and r;

if m + k ≥ 2, with probability 1/(m+ k) an offer w is made to each observant buyer

with reported valuation in the interval [w,w] and an offer t to each unobservant buyer.

• When the highest reported valuation is above w: the buyer is made an offer equal to

the second highest reported valuation if it is above w; if the second highest reported

valuation is in [w,w] or m ≥ 1, an offer (w + (m + k)w)/(m + k + 1) is made to the

buyer; if it is below w and m = 0, the buyer is made an offer equal to the maximum

of the second highest reported valuation and r.

In terms of the offer rule, an equal priority mechanism {r, w, w; t} is a second-price

auction with a reserve price r for observant buyers, combined with a take-it-or-leave-it offer

t to unobservant buyers. However, we have an equal priority pool consisting of observant

buyers with valuations between w and w and unobservant buyers. As a result, the second

price, or the offer made to the buyer with the highest reported valuation, is the maximum of

r and the second highest reported valuation, only if the second highest reported valuation is

outside [w,w], and only if there are no unobservant buyers when the second highest reported

valuation is lower than w.

Formally, using the notation of direct mechanisms introduced in section 2.1, we can

represent an equal priority mechanism {r, w, w; t} as follows. Suppose that v1 is the high-

est reported valuation, and v2 be the second highest reported valuation. The collection

of functions
{

(qǫm(v), p
ǫ
m(v))

n−1

m=0
, (qµm(v), p

µ
m(v))

n

m=1

}

given by an equal priority mechanism

{r, w, w; t} is































qǫm(v) = 0 if v1 < r, or v1 ∈ [r, w) and m ≥ 1

qǫm(v) = 1/(m+ k), pǫm(v) = w if v1 ∈ [w,w] and m+ k ≥ 2

qǫm(v) = 1, pǫm(v) = (w + (m+ k)w)/(m+ k + 1) if v1 > w, and v2 ∈ [w,w] or m ≥ 1

qǫm(v) = 1, pǫm(v) = max{v2, r} if otherwise,
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and






qµm(v) = 0 if v1 > w

qµm(v) = 1/(m+ k), pµm(v) = t if otherwise.

Suppose that observant buyers truthfully report their valuations in an equal priority

mechanism. Then using the allocation rule, we can calculate the probability with which

each type of observant buyer trades. This probability of trade function Qǫ for an observant

buyer is































0 if w < r

(1− α)n−1F n−1(w) if w ∈ [r, w)
∑n−1

m=0
B(m;n− 1, α)

∑n−1−m

k=0
Bn−1−m

k (w,w)/(m+ k + 1) if w ∈ [w,w]
∑n−1

m=0
B(m;n− 1, α)F n−1−m(w) if w > w,

(5)

where

Bn−1−m
k (w,w) =





n− 1−m

k



 (F (w)− F (w))kF n−1−m−k(w).

We now provide more convenient formulas for Qǫ. For w > w, we have

Qǫ (w) = ((1− α)F (w) + α)n−1 .

For w ∈ [w,w], The trading probability Qǫ(w) for w ∈ [w,w] plays a critical role in the

analysis below, and for convenience we denote it as χ(w,w). We re-do the double summations

over m and k by first summing over k for fixed l = m+ k then summing over l, and rewrite

χ(w,w) as

n−1
∑

l=0





n− 1

l



 ((1− α)F (w))n−1−l 1

l + 1

l
∑

k=0





l

k



 ((1− α)(F (w)− F (w)))kαl−k

=

n−1
∑

l=0





n− 1

l



 ((1− α)F (w))n−1−l 1

l + 1
((1− α)(F (w)− F (w)) + α)l.
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It follows that

χ(w,w) =
((1− α)F (w) + α)n − ((1− α)F (w))n

n((1− α)(F (w)− F (w)) + α)
. (6)

The function χ gives the probability that a buyer whose valuation is in the pooling interval

[w,w] receives an offer. The logic in χ (w,w) is that the buyer has the same chance of

receiving an offer as any of the unobservant buyers and any other observant buyer whose

reported valuation is in the interval [w,w], as long as there are no observant buyers with

valuation above w. This explains why in the formula (6) the denominator is the expected

number of buyers in the equal priority pool, and the numerator is the total probability that

there is at least one buyer, observant or unobservant, with that priority.

The following result gives the necessary and sufficient condition for the equal priority

mechanism {r, w, w; t} to be incentive compatible.

Lemma 1 The equal priority mechanism {r, w, w; t} is incentive compatible if and only if

∫ w

r

(1− α)n−1F n−1(w)dw ≥ χ(w,w)(w − t) (7)

Two arguments are needed to establish Lemma 1. The first is to show that the rules

of allocation and offers are the ones that make truthful reporting incentive compatible by

observant buyers. Note that when observant buyers report their valuations truthfully, they

accept their offers with probability one. Since the allocation rule is monotone, we just need

to show that the payoff of observant buyers U ǫ(w) from truthful reporting satisfies (3) for

each w.10

The second is to show that when t satisfies condition (7) no observant buyer can improve

his payoff by pretending to be unobservant. Since Qǫ(w) = χ(w,w) for all w ∈ [w,w], it

follows from (3) that U ǫ(w) is linear with slope χ(w,w). By construction, this is the same

slope as the increasing part of the payoff function Uµ(w) for unobservant buyers, which is

given by

Uµ(w) = χ(w,w)max{w − t, 0},

10Indeed, the offer rule is constructed from the allocation rule of the equal priority mechanism to ensure
that it is incentive compatible with respect to valuations.
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because unobservant buyers have the same allocation priority as observant buyers whose

valuations are in [w,w]. Moreover, since by construction Qǫ(w) is strictly increasing for

w ∈ [r, w) and w > w, it follows from (3) that the payoff function U ǫ(w) is strictly convex for

w ≥ r outside [w,w]. The equal priority auction {r, w, w; t} is therefore incentive compatible

if and only if U ǫ(w) ≥ Uµ(w). This is precisely (7).

w

Uµ(w)

tr w w

U ǫ(w)

Figure 1. An equal priority mechanism with a binding incentive constraint.

Figure 1 above shows the payoffs to observant and unobservant buyers in an equal priority

mechanism with a binding incentive compatible constraint (7). The green line represents the

payoff function Uµ(·) of an unobservant buyer or an observant buyer that acts as one. (It

is zero for valuations below t.) The slope of the green line is χ(w,w). The red curve

represents the payoff function U ǫ(w) to an observant buyer. It coincides with the green line

for valuations in the pooling interval [w,w] because the incentive condition (7) is binding,

and is strictly convex for valuations between r and w, and above w. (It is equal to zero for

valuations below r.)

In any equal priority mechanism, observant buyers with low valuations, between r and w,

and those with high valuations, above w, are strictly worse off by pretending to be unobser-

vant. If the incentive compatibility constraint (7) is binding, it is a matter of indifference for

observant buyers with valuations in [w,w] whether they truthfully report their valuations or
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wait for the take-it-or-leave-it offer t just like an unobservant buyer. Indeed, the same truth

telling equilibrium among observant buyers is implemented if we change the offer rule, so

that the offer received by an observant buyer with valuations in the pooling interval [w,w]

is always t, instead of the maximum of the second highest bid and reserve price r when

there are no other buyers in the equal priority pool, and w when there is at least one un-

observant buyer in the pool. Furthermore, by revenue equivalence, the seller’s revenue from

observant buyers is the same if all observant buyers with valuations in the pooling interval

[w,w] behave in the same way as unobservant buyers. Since the allocation probability qµ(v)

and the offer pµ(v) for unobservant buyers depend only on the size of the equality priority

pool, i.e., m+ k, and not on its composition, the seller’s revenue from unobservant buyers is

also unaffected by whether or not observant buyers with valuations in [w,w] pretend to be

unobservant.

Any equal priority mechanism {r, w, w; t} with a binding incentive condition (7) is there-

fore payoff-equivalent for all buyers and the seller to the following indirect mechanism. All

buyers, observant or unobservant, are asked to place their bids; the seller reveals a random

password; unobservant buyers do not know the password and their bids are treated as mean-

ingless babbles; observant buyers can match the password and have their bids accepted as

valid, except that those in the pooling interval [w,w] are treated as babbles; the allocation

and offer rules otherwise mimic those in the equal priority mechanism, with l representing

the total number of buyers who babble:

• When the highest bid is less than r: the seller keeps the object if l = 0; otherwise,

with probability 1/l the seller makes an offer t to each babbling buyer.

• When the highest bid is between r and w: if l = 0, the bidder wins and pays the

maximum of the second highest reported valuation and r; if l ≥ 1, with probability

1/l, the seller makes an offer t to each babbling buyer.

• When the highest bid is above w: the bidder wins; he pays the second highest bid if

it is above w, the maximum of r and the second highest bid if it is below w and l = 0,

and otherwise (w + lw)/(l + 1).
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The above indirect mechanism is what we refer to as the equal priority “auction” in the

introduction. As in a standard auction, the winner is the one with the highest valid bid,

and the auction commits all bidders to paying the price charged by the seller when they

win. To bidders who submit valid bids, it looks like a second price auction: the winner pays

the maximum of the second highest bid and a reserve price. A non-standard part is that

bids in the interval [w,w] are treated as uninformative. The other non-standard part is that

the seller’s reserve price depends on the number l of babbling buyers: it is r when l = 0,

and otherwise it is (w+ lw)/(l+ 1). To bidders in the auction, the reserve price is therefore

“secret.” This is because the seller has the outside option of offering the object to a babbling

buyer.

3.1 Optimal equal priority mechanism

Under an equal priority mechanism {r, w, w; t}, the seller’s expected revenue from observant

buyers is given by the first term in (4),

R(δ) = n(1 − α)

∫

1

0

Qǫ (w)φ(w)f(w)dw, (8)

where Qǫ(w) is specified in (5), and the revenue from unobservant buyers is given by the

second term in (4), which is equal to

n
∑

m=1

B(m;n, α)

n−m
∑

k=0

Bn−m
k (w,w)

m

m+ k
π(t) = nαχ(w,w)π(t). (9)

The optimal equal priority mechanism {r, w, w; t} maximizes the sum of (8) and (9) subject

to r ≤ w ≤ w and (7).

The following lemma characterizes optimal equal priority mechanisms. We assume that

π(·) is strictly concave. This implies that φ(w) crosses 0 only once. Let the crossing point

be r∗; this is also the unique maximizer of π(w). Furthermore, φ(w) is strictly increasing in

v for w ≥ r∗.11 The valuation r∗ represents the optimal reserve price in a standard auction,

11At any w ∈ (0, 1), if f(w) is non-decreasing, then by definition φ(w) is strictly increasing; if f(w) is
strictly decreasing at w and if φ(w) ≥ 0, then φ(w) is strictly increasing in w, because concavity of π(w)
implies that φ(w)f(w) is strictly increasing in w.
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regardless of the number of buyers.12

Lemma 2 Suppose that π(·) is strictly concave. If {r, w, w; t} is an optimal equal priority

mechanism, then

0 < r < r∗ < t < w < w < 1.

Further, (7) holds with equality, and

α(π(t)− φ(w)) = (1− α)

(

(w − t)(φ(w)− φ(w))f(w) +

∫ w

w

(φ(w)− φ(w))f(w)dw

)

; (10)

−απ′(t) = (1− α)(φ(w)− φ(w))f(w); (11)

−φ(r)f(r) = (φ(w)− φ(w))f(w). (12)

Our proof (in the appendix) first uses variational arguments to establish that the optimal

mechanism is interior, satisfying r < t < w < w. In particular, w < w, so that the pooling

interval [w,w] is non-degenerate as long as unobservant buyers are present in the model, i.e.,

α > 0. If the interval were degenerate, then the seller could cut the offer t to unobservant

buyers and pool observant buyers with them by decreasing w and increasing w. We show

that cutting the price offer t has a first order revenue gain from unobservant buyers, and the

corresponding pooling has only a second order revenue loss from observant buyers.

In any optimal equal priority mechanism, the incentive condition (7) for observant buyers

with valuations in the pooling interval [w,w] is binding. Otherwise, in Figure 1 we would

have a line segment in the payoff function U ǫ(·) for observant buyers parallel to, and above,

the linear part of the payoff function Uµ(·) for unobservant buyers. The seller would then

want to either shrink the pooling interval, by increasing w and decreasing w, or raise the

take-it-or-leave-it offer t to unobservant buyers.

The three conditions (10), (11) and (12) are the first order conditions for an interior op-

12In much of the auction literature, the seller has the fixed outside option of keeping the object. The
virtual valuation function φ(w) is assumed to be strictly increasing to simplify the analysis (the “regular
case” in Myerson [1981]). In our model, the seller’s outside option in an auction with observant buyers is to
give it to an unobservant buyer with a take-it-or-leave-it offer, and is endogenous because it is chosen by the
seller. We do not need to assume that φ(w) is strictly increasing for valuations below r∗.
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timum.13 In an optimal equal priority mechanism, the reserve price r for selling to observant

buyers when there are no unobservant buyers is set below the standard optimal reserve price

r∗ in the absence of unobservant buyers, as can be seen from (12). This sacrifices revenue

when all observant buyers have low valuations and there are no unobservant buyers, but

provides incentives for observant buyers to truthfully report their valuations instead of pre-

tending to be unobservant. Correspondingly, (11) implies that the take-it-or-leave-it price

t to unobservant buyers is raised above the optimal monopoly price r∗ in the absence of

observant buyers. This reduces the revenue when all buyers are unobservant, but provides

disincentive for observant buyers to pretend to be unobservant.

If the seller does not give the object to an observant buyer, she can always make a take-

it-or-leave-it offer to an unobservant buyer if there is one. Absent incentives, the seller would

set the reserve price r(t) for observant buyers so that the virtual valuation is equal to the

expected profit π(t) of making the offer t to an unobservant buyer:

φ(r(t)) = π(t).

By condition (10), the optimal equal priority mechanism has φ(w) < π(t). This means that

the seller gives the object to observant buyers even though their virtual valuations are lower

than the value of the seller’s “outside option” π(t). This reason for doing this is to provide

incentives for truthful reporting by observant buyers with valuations just above w rather

than wait for the take-it-or-leave-it offer by pretending to be unobservant.

When all buyers are surely observant the revenue from the optimal equal priority mecha-

nism converges to the revenue from the standard auction with reserve price r∗, as it becomes

optimal for the seller not to distort the reserve price r at all to provide incentives (equa-

tion (12)). The pooling interval shrinks to a single valuation v0 as α goes to 0,14 satisfying

13They are all derived with variational arguments without explicitly using a multiplier for (7). For example,
condition (10) is obtained by marginally changing w and w such that (7) is satisfied and then considering the
effects on the seller’s revenue. From the proof in the appendix, it can be seen that the value of the multiplier
associated with (7) is the right hand side of (11) multiplied by n. This turns out to be the integral of the
multiplier function λ(·) in the proof of Theorem 2 over the valuation support [0, 1].

14The limit of χ(w,w) as α goes to 0 and w and w shrink to the same point of v0 is Fn−1(v0). That is,
when all other buyers are almost surely observant, a deviating observant buyer will be the only buyer in the
equal priority pool and will win the object with probability one if all other buyers (who are observant) have
valuation below v0.
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the binding constraint (7) that an observant buyer with valuation v0 is indifferent between

truthfully reporting it and receiving a take-it-or-leave-it offer t0 when all other buyers have

valuations below v0,
∫ v0

r∗
F n−1(w)dw = F n−1(v0)(v0 − t).

The limit values of v0 and t0 satisfy the above indifference condition and the limit version of

first order conditions (10) and (11), given by

π′(t0)(v0 − t) + π(t0)− φ(v0) = 0.

We have t0 > r∗ and π(t0) > φ(v0). When α is arbitrarily close to 0, the incentives for

observant buyers not to pretend to be unobservant are provided by raising the take-it-leave-

it offer to an unlikely unobservant buyer above r∗, and not selling to unobservant buyers

even when the profit from doing so exceeds virtual valuations of observant buyers.

In the opposite limit of α = 1, buyers are surely unobservant, and the revenue from the

optimal equal priority mechanism converges to the revenue from a take-it-or-leave-it offer

r∗. By (11), the seller no longer distorts t to provide incentives for observant buyers. From

(10), the upper-bound of the pooling interval converges to r(r∗), satisfying

φ(r(r∗)) = π(r∗),

as the need for the seller to provide incentives for observant buyers with valuations just above

the upper-bound becomes second order. From the binding constraint (7), the lower-bound

of the pooling interval becomes r∗.15 This is to prevent an unlikely observant buyer with

a valuation equal to the lower bound from pretending to be unobservant, as the buyer has

close to zero chance of making the winning bid with the limit reserve price r1 satisfying (12)

−φ(r1)f(r1) = π(r∗)f(r∗).

As long as α is strictly less than 1, however, the mechanism is what provides incentives for

15The limit of χ(w,w) as α goes to 1 is 1/n, as an unlikely observant buyer will surely face n−1 unobservant
buyers in the equal priority pool after pretending to be unobservant.
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observant buyers with valuations just below the lower bound of the interval not to pretend

to be unobservant.

3.2 Optimal direct mechanisms

We want to show that an optimal equal priority mechanism provides the seller the highest

expected revenue among all direct mechanisms. Optimizing over all incentive compatible

direct mechanisms is difficult, due to the continuum of incentive constraints for observant

buyers with any valuation w not to pretend to be unobservant. Instead we adopt an indirect

approach, by incorporating the continuum of constraints through a multiplier function. This

is known as the Lagrangian relaxation method.

Recall that a direct mechanism δ consists of a series of functions (qǫm(v), p
ǫ
m(v))

n−1

m=0 and

(qµm(v), p
µ
m(v))

n
m=1. We first use the assumption that π(·) is strictly concave to simplify

the optimal design problem. Replacing all these offers with the expected offer reduces the

deviation payoff to observant buyers from pretending to be unobservant. Concavity then

implies a greater revenue from unobservant buyers.

Lemma 3 If π(·) is strictly concave, then in any optimal direct mechanism, pµm(v) is inde-

pendent of m and v.

Using Lemma 3, we denote the constant price offered to the unobservant as pµ. Define

Qµ =

n−1
∑

m=0

B(m;n− 1, α)Ev

[

qµm+1(v)
]

to be the total probability of an offer expected by an unobservant buyer (or a deviating

observant buyer).

Next, we drop the transfers (pǫm(v))
n−1

m=0 to observant buyers, and construct the relaxed

Lagrangian using only allocations (qǫm(v))
n−1

m=0. Once we show that an optimal equal priority

{r, w, w; t} solves the relaxed Lagrangian, we can then use the offer rule in section 3 to

construct the transfers (pǫm(v))
n−1

m=0 and the resulting payoff function U ǫ(·), and apply Lemma

1 to conclude that the solution is incentive compatible.
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We are thus led to the following maximization problem: Choose (qǫm(v))
n−1

m=0, (q
µ
m(v))

n
m=1,

and pµ to maximize

n(1− α)

∫

1

0

Qǫ (w)φ(w)f(w)dw+ nαQµπ (pµ) ,

subject to the feasibility constraint (2), Qǫ (·) is non-decreasing, and for every w

∫ w

0

Qǫ (x) dx ≥ Qµmax {w − pµ, 0} . (13)

Let λ(·) be an arbitrary non-negative valued Lagrangian function from [0, 1] into R. The

relaxed problem is to maximize

n(1− α)

∫

1

0

Qǫ (w)φ(w)f(w)dw+ nαQµπ (pµ)

+

∫

1

0

λ (w)

(∫ w

0

Qǫ (x) dx−Qµmax {w − pµ, 0}

)

dw,

with the same choice variables and constraints except (13). That is, by introducing the La-

grangian function, we incorporate a continuum of constraints (13) into the objective function

of the relaxed problem as an extra term.

The above relaxed problem has different solutions depending on the choice of λ(·). Re-

gardless of the choice of λ(·), however, the value of the relaxed problem is an upper bound

on the value of the full problem, because the solution to the full problem is feasible for the

relaxed problem and because the extra term in the objective function of the relaxed problem

is non-negative by construction. We will try to construct a function λ (·) such that the solu-

tion to the relaxed problem is an optimal equal priority mechanism. Since the equal priority

mechanism yields an upper bound on the seller’s revenue in the full problem, and since it

satisfies all the constraints in the full problem, it solves the full problem.

The multiplier function λ(·) is the shadow cost (benefit) of violating (relaxing) the con-

straints (13). The second term in the relaxed Lagrangian is the total shadow value. The

relaxed problem is then choosing feasible allocations (qǫm(v))
n−1

m=0 and (qµm(v))
n
m=1, together

with pµ, to maximize the sum of the resulting revenues from observant and unobservant

24



buyers and the shadow values. The key to our construction of the desired λ(·) is that, first,

it satisfies complementary slackness so that the extra term in the relaxed Lagrangian is zero;

and second, the allocations of an optimal equal priority auction characterized by Lemma 2

maximize the sum of the revenues and the shadow values. More precisely, we use integration

by parts and rewrite the Lagrangian as

n−1
∑

m=0

B(m;n− 1, α)

∫

1

0

(

n(1− α)φ(w)f(w) +

∫

1

w

λ(x)dx

)

Qǫ
m(w)dw

+
n−1
∑

m=0

B(m;n− 1, α)

(

nαπ(pµ)−

∫

1

0

λ(w)max{w − pµ, 0}dw

)

Qµ
m+1.

We want to choose λ(·) to have the following properties: (i) It is equal to 0 outside of [w,w]

where the constraint (13) is slack. (ii) It is non-negative on [w,w] and makes the expression

in the first bracket in the above Lagrangian constant, so that it is point wise maximizing

to have constant Qǫ
m(w) for all w ∈ [w,w]. (iv) The constant value of the expression in the

first bracket in the above Lagrangian matches the constant value of the expression in the

second bracket, so that it is point wise maximizing to give the same allocation priority to

observant buyers with valuations in the pooling interval and unobservant buyers. (iv) The

value of the expression in the first bracket is strictly increasing and greater than that in the

second bracket for w > w, and increasing and smaller for w < w, so that observant buyers

have increasing and higher priorities than unobservant buyers if their valuations are higher

than w, and increasing and lower priorities if their valuations are lower than w.

Theorem 2 Suppose that π(·) is strictly concave. Then, there is no incentive compatible

direct mechanism that yields a strictly greater revenue than an optimal equal priority mech-

anism.

Putting together Theorems 2 and 1, we have shown that when π(·) is concave, the

outcome of a U-equilibrium of the game G where unobservant buyers babble corresponds

to an optimal equal priority mechanism. Conversely, once we solve for the optimal equal

priority mechanism, we can construct a U-equilibrium with the same outcome. Since equal

priority mechanisms are relatively straightforward to describe and optimize over, our result
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provides a simple characterization of equilibrium outcomes of the unobserved mechanism

design game in the important class where unobservant buyers babble.16

The relative simplicity of optimal equal priority mechanisms also allows us to understand

welfare implications of unobserved mechanism design. The seller is of course worse off com-

pared to when all buyers are observant, as unobservability reduces the power of commitment

necessary for standard optimal auctions. This means that the seller has incentives to “ed-

ucate” buyers about her mechanism. But such attempt would be thwarted so long as the

commitments in the mechanism remain unverifiable.

When all n buyers are surely observant, they face the standard optimal reserve price of r∗.

In a U-equilibrium of the unobserved mechanism design game G with α > 0, the seller sets

r < r∗, so an observant buyer with a valuation between r and r∗ is better off than when there

are no unobservant buyers around. Observant buyers with higher valuations are affected by

the presence of unobservant buyers in two opposing ways: they can win even though some

unobservant buyer has a higher valuation, but they may also lose to an unobservant with

a lower valuation. The net effect is generally ambiguous, but we can show that observant

buyers with sufficiently high valuations benefit from having unobservant buyers around if

the number of buyers is sufficiently large.17

For unobservant buyers, the relevant welfare comparison question is how they are affected

by the presence of observant buyers. If there are no observant buyers, unobservant buyers

have an equal chance of receiving a take-it-or-leave-it offer equal to r∗. Since in a babbling

equilibrium of G the seller sets the take-it-or-leave-it offer t strictly above r∗, an unobservant

16Indeed, the first order conditions (10), (12) and (11), together with the binding constraint (7), are
sufficient as well as necessary for an optimal equal priority mechanism. The sufficiency comes from the fact
that the proof of Theorem 2 uses only the first order conditions. That is, Theorem 2 actually shows that an
equal priority mechanism that satisfies the first order conditions are optimal among all direct mechanisms,
and a fortiori, optimal among all equal priority mechanisms.

17To see this, note that

U ǫ(1) =

∫

1

r

Qǫ(w)dw >

∫

1

w

((1 − α)F (w) + α)n−1dw.

The above is greater than
∫

1

r∗
Fn−1(w)dw when n is sufficiently large, because by integration by parts, it is

implied by

(1− α)

∫

1

w

((1− α)F (w) + α)n−2f(w)wdw <

∫

1

r∗
Fn−2(w)f(w)wdw,

which is true for large enough n by using another integration by parts.
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buyer with a valuation w just above r∗ is worse off in equilibrium than when there are no

observant buyers around. For unobservant buyers with higher valuations, they have a higher

priority than observant buyers with valuations below w, which makes them better off in

equilibrium, but lose out to observant buyers with valuations above w. The net effect is

again ambiguous, but we can show that unobservant buyers are all worse off in equilibrium

than when there are no observant buyers if the number of buyers is large.18

4 Discussion

The main insight of the present paper has to do with how unobservability affects mecha-

nism design. Although they do not observe the seller’s mechanism, unobservant buyers in

our model are meant to be fully rational rather than behavioral. In any equilibrium of the

imperfect information game G, as rational players unobservant buyers know the strategies of

the seller and the observant buyers. To focus on the main insight of unobserved mechanism

design, we have taken a short cut by assuming that there is a separate message space Mǫ

for observant buyers that is not accessible to unobservant buyers. This prevents unobservant

buyers from participating in the seller’s mechanism in the same way as observant buyers do,

even though they know the seller’s mechanism. At the same time, there is a message space

Mµ for unobservant buyers that is also accessible to observant buyers. This is where the

assumption that unobservant buyers are fully rational leads us to conclude that communi-

cation of their valuations by unobservant buyers is severely restricted - in fact in this paper

there is no communication at all - because the seller can’t refrain from exploit such com-

munication through deviations that unobservant buyers don’t see. Since observant buyers

can pretend to be unobservant by choosing their message from Mµ, and since the seller gets

part of the revenue from unobservant buyers, the presence of unobservant buyers affects the

seller’s auction design with observant buyers, even though unobservant buyers don’t know

how to participate in the same way as observant buyers.

18We have
Uµ(1) = χ(w,w)(1 − t) < ((1− α)F (w) + α)n−1(1− r∗).

The above is less than (1− r∗)/n when n is sufficiently large. Since the payoff functions are piece wise linear,
an unobservant buyer with any valuation is worse off in equilibrium.
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A more general approach to unobserved mechanism design would be an imperfect infor-

mation game G where the message space M in the seller’s mechanism used by all buyers,

observant or unobservant, is common knowledge. An intuitive conjecture is that, any U-

equilibrium outcome in G with some Mǫ and Mµ can be replicated by a suitably defined

U-equilibrium in G with a sufficiently rich M, and vice versa.19 The general approach is

beyond the scope of this paper as it raises two challenging technical issues. First, we need to

formally define randomizations over mechanisms in G in order to give the seller the option

of preventing unobservant buyers from participating in the mechanism in the same way as

observant buyers. The idea is that even though unobservant buyers know the seller’s mixed

strategy and can use messages in M as observant buyers do, the realized mechanism is seen

by observant buyers only and is never correctly “guessed” by unobservant buyers.20 Second,

we need to be able to compute the expected payoff of the seller and the expected payoffs of

observant and unobservant buyers for any valuation and over any mixture of mechanisms,

given strategies of the observant and the unobservant. For any fixed realization of a mixture,

for each valuation, the revenue of the seller, the expected payoff of an observant buyer, and

the expected payoff of an unobservant buyer, are all well-defined from the strategies of the

observant and the unobservant. The expectations of these payoffs over a given mixture are

examples of functional integration. The domain of the integration is a function space, which

represents the space of mechanisms; each integrand is a functional, which represents the

revenue of the seller, the payoff of an observant buyer or the payoff of an unobservant buyer

with a given valuation, for each mechanisms in the domain.

19The following is a verbal argument that the outcome of any U-equilibrium {γ, σǫ, σµ} in G, where
γ = {P, q} is defined over Mǫ and Mµ, can be replicated by a mixed U-equilibrium {ψ, σǫ, σµ} in G through
“password” mechanisms. The message space M in G is the product of M and [0, 1], the latter meant to
represent the space of a random password, with a typical element denoted as x. A message by buyer i is
bi = (bi, xi), where bi ∈ Mǫ ∪ Mµ and xi ∈ [0, 1]. With x uniformly distributed on [0, 1], each realized
mechanism γ(x) = {P, q} in the mixture ψ has the identical selection and offer probabilities q and P as q
and P , if the first part of each message in a profile either comes from Mǫ when the second part matches the
password x or comes from Mµ when the second part doesn’t match x, and otherwise keeps the good. The
rest of the argument for replication is to construct the strategies σµ

i and σǫ
i to mimic σµ

i and σǫ
i through

password-matching.
20Wemay formally think of a mixture of mechanisms as a stochastic process, where a mechanism - mappings

from profiles of bids in M to profiles of probabilities of selection and offers - becomes a sample function.
Then we can apply the Kolmogorov extension theorem to construct a probability measure associated with
the stochastic process. This requires us to specify the distributions of selection probabilities and offers for
each profile of bids induced by the mixture.
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We have assumed that the output of the seller’s mechanism is a single take-it-or-leave-

it offer in the unobserved mechanism design game. If this offer is rejected, which it will

sometimes be if it is made to an unobservant bidder, the game ends without trade. We view

this game form as a “canonical” one, because under the standard mechanism design problem

with observant agents, it is never optimal for the seller to make offers that might be rejected.

As we have mentioned in the introduction, a separate motivation for this particular game

form is that we can obtain empirically relevant results through equal priority auctions.

The assumption of a single take-it-or-leave-it offer is without loss for observant buyers,

since, as in a standard auction, they will always want to accept the offer when they are made

one. For the unobservant this assumption is perhaps unrealistic. Once the seller learns who

the unobservant buyers are, the seller is likely to approach them in sequence with offers.

One question is how this might change if the seller could follow up a rejection by making a

possibly lower offer to one of the other unobservant bidders.

A general approach to unobserved mechanisms is to model the output of a mechanism

as an “algorithm,” which is a sequence of take-it-or-leave-it offers and the identities of the

buyers to whom the offers are made. As in the present model, the seller first makes a

commitment in terms of how a particular sequence of offers is chosen in response to the

messages sent by the buyers, who however may not observe it. It is straightforward to

generalize the analysis in the present paper to the case in which algorithms are restricted

to at most one take-it-or-leave-it offer for each buyer, and unobservant buyers babble. The

main insights are intact - an unobservant buyer receives an expected offer independent of

the buyer’s valuation, while observant buyers face an outside option of waiting for their turn

to receive an offer if they decide to pretend to be unobservant. We conjecture that the

equilibrium outcome with babbling by unobservant buyers can be characterized by a similar

equal priority mechanism as in the present model, with the single offer to unobservant buyers

replaced with a decreasing sequence of offers. The seller’s equilibrium revenue should be

higher than the present single-offer model, because being able to make a sequence of offers

improves the seller’s revenue from unobservant buyers, without necessarily increasing the

value of outside option to observant buyers who pretend to be unobservant.

A more challenging question with multiple offers arises if the seller’s algorithm is not
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restricted to at most one take-it-or-leave-it offer for each buyer. Since an unobservant buyer

does not observe the seller’s deviations to other algorithms, rejecting an offer from the seller

could reveal information about his valuation that could be exploited later by the seller. Yet

we can make one observation. The equilibrium when the seller’s algorithm is restricted to at

most one take-it-or-leave-it offer for each buyer can be supported as an equilibrium when the

algorithms are unrestricted. Imagine that an unobservant buyer disappears after rejecting

an offer, believing the seller’s algorithm makes at most one offer to each buyer. Given this

belief by unobservant buyers, committing to an algorithm that potentially makes multiple

offers to a given buyer would only affect the behavior of observant buyers. This then becomes

unprofitable because observant buyers observe the seller’s commitment.

There may be other equilibria when the seller’s algorithm is not restricted to at most

one take-it-or-leave-it offer for each buyer. It would be interesting to find out if any of these

equilibria makes the seller better off compared to the equilibrium when the seller can make

at most one offer to a buyer. We defer these questions to future research since it not clear

at this point what is the best way to generalize to multiple offers to each buyer.

We have assumed that buyers are either fully observant or fully unobservant. A more rea-

sonable assumption might be that buyers have partial information about commitments. For

example, we could assume that some buyers may only be able to understand commitments

to actions based on their own messages, but not commitments that depend on the messages

of others. If all buyers have this type of partial information, then there is an equilibrium

in which the seller implements the optimal auction of Myerson [1981] through a first-price

sealed bid auction.21 When buyers have differential information about the seller’s commit-

ments - for example, if buyers either fully observe the seller’s commitment or only observe

the part based on their own message - we nonetheless believe that our basic insight could be

extended to this kind of assumption. Yet we are reluctant to pursue without a better model

of what buyers can and cannot understand.

21This corresponds to the main result of Akbarpour and Li [2020], who frame the issue of partial observ-
ability in terms of limited commitment by the seller.
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5 Related Literature

As mentioned above, the idea that consumers might not notice prices is an old one in the

marketing literature. The approach had been used earlier in economics, as in, say Butters

[1977], in which buyers randomly observe price offers in a competitive environment. In that

literature, firms advertise prices which some buyers see, while others do not.22 These papers

considered the same problem that we do, which is how this unobservant buyers would affect

the prices that firms offer. The difference is that we are interested in mechanisms, not prices.

The presence of unobservant buyers provides type dependent outside options to observant

buyers. This is the basic problem in the literature on competing mechanisms. One example

is the paper by McAfee [1993]. His model had buyers whose outside option involved waiting

until next period to purchase in a competing auction market just like the one in the current

period. He imposed large market assumptions to ensure that the value of these outside

options was independent of the reserve price that any seller in the existing market chose. In

our paper, the value of this outside option depends on the nature of the mechanism the seller

chooses for the observant. This makes it resemble later papers on competing mechanisms in

terms of outside options, like Virag [2010] who studies finite competing auction models where

a seller who raises her reserve price increases congestion in other auctions, or Hendricks and

Wiseman [2020] who study the same problem in a sequential auction environment.

With buyers potentially unobservant of the selling mechanism but nonetheless having

rational expectations, the seller’s commitment power is limited. There is an extensive litera-

ture on limited commitment (for example Bester and Strausz [2001], Kolotilin et al. [2013],

Liu et al. [2019], or Skreta [2015]). To our knowledge, our model is the first to study

commitment with respect to a subset of traders involved in the same transaction. A recent

paper by Akbarpour and Li [2020] provides another model of limited commitment. They

assume that each individual buyer only observes the part of the seller’s commitment in re-

lation to the buyer’s own report, and impose a “credibility” constraint that the seller does

not wish to secretly alter other parts of the commitment. The logic we described above

explaining why the second price auction can’t survive as an equilibrium is used in a similar

22See also Varian [1980], or Stahl [1994]. In Varian [1980], unobservant buyers are loyal to a specific seller,
observant buyers are just interested in the lowest price.
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way in their paper. The difference between their approach and ours is that they assume

the credibility constraint applies to all buyers and describe mechanisms that are immune to

this constraint. Here we assume that credibility is an issue only for some buyers and find

equilibrium mechanisms.

Our observant buyers can “prove” they are observant in the same sense as Porath et al.

[2014]. The main difference is that they assume that the social choice function is known

by all the players, while in our model the driving force is the presence of buyers who are

unobservant of the seller’s mechanism. They also assume players have complete information

about the state, but in our model only buyers know their own valuations.

Finally, our observant buyers can pretend they are unobservant but not the other way

around. The one-sidedness of this incentive condition is similar to Denekere and Severi-

nov [2006], who study an optimal non linear pricing problem with a fraction of consumers

constrained to reporting their valuations truthfully.23 As in our paper, their mechanism

separates “honest” consumers from “strategic” consumers who can misrepresent their valu-

ations costlessly. The main difference is that we start with a standard independent private

value auction problem rather than a non linear pricing problem. More importantly, our

unobservant buyers are uncommunicative in the class of equilibria we focus on, but they are

rational rather than behavioral.

6 Appendix: Omitted Proofs

Proof of Lemma 1

We verify that the expected payoff of an observant buyer with valuation w matches U ǫ(w)

given by (3) and (5). There are four cases.

(i) By truthfully reporting his valuation, an observant buyer with w < r never wins the

object, and thus the expected payoff is 0, matching U ǫ(w) in (5) and (3) for w < r.

(ii) By truthful reporting, an observant buyer with w ∈ [r, w) wins the object only when

m = 0 and all n − 1 other observant buyers have valuation at most w, pays the maximum

23See also Sher and Vohra [2015]. They use graph theory to study a more general non linear pricing
problem with voluntary provision of hard evidence.
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of r and the second highest valuation. Thus, the expected payoff is

w(1− α)n−1F n−1(w)−

(

r(1− α)n−1F n−1(r) +

∫ w

r

x d
(

(1− α)n−1F n−1(x)
)

)

.

By integration by parts, the above matches U ǫ(v) in (3) and (5) for v ∈ [r, w).

(iii) By truthful reporting, an observant buyer with w ∈ [w,w] wins the object with

probability one when m = 0 and all n − 1 other observant buyers have valuation at most

w, and pays the maximum of r and the second highest valuation. The contribution of this

event to the buyer’s expected payoff is

w(1− α)n−1F n−1(w)−

(

r(1− α)n−1F n−1(r) +

∫ w

r

x d
(

(1− α)n−1F n−1(x)
)

)

=U ǫ(w) + (w − w)(1− α)n−1F n−1(w).

The buyer also wins the object with probability 1/(m+k+1) when there are m unobservant

buyers, all n−m− 1 other observant buyers have valuation at most w, and m+ k is at least

1 (where k is the number of observant buyers with valuation on [w,w]), and pays w. The

contribution of this event to the buyer’s expected payoff is

(w − w)
(

χ(w,w)− (1− α)n−1F n−1(w)
)

.

The sum of the above two expressions matches U ǫ(w) in (3) and (5) for w ∈ [w,w].

(iv) By truthful reporting, an observant buyer with w > w wins the object with proba-

bility one when m = 0 and the second highest bid is below w, and he pays the maximum of

the second highest bid and the reserve price r. The contribution to the expected payoff is

U ǫ(w) + (w − w)(1− α)n−1F n−1(w).

He also wins with probability one when the second highest bid is below w and m + k ≥ 1,
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and pays (w + w(m+ k))/(m+ k + 1). The contribution to the expected payoff is

n−1
∑

m=0

B(m;n− 1, α)

n−1−m
∑

k=0

Bn−1−m
k (w,w)

(

w −
w + w(m+ k)

m+ k + 1

)

− (w − w)(1− α)n−1F n−1(w)

=(w − w)((1− α)F (w) + α)n−1 + (w − w)χ(w,w)− (w − w)(1− α)n−1F n−1(w).

Finally, the observant buyer with w > w wins with probability one and pays the second

highest bid x when it is above w, which occurs with probability

n−1
∑

m=0

B(m;n− 1, α)(F n−1−m(x)− F n−1−m(w)).

By integration by parts, the contribution to the expected payoff is

∫ w

w

n−1
∑

m=0

B(m;n− 1, α)(F n−1−m(x)− F n−1−m(w))dx

=

∫ w

w

n−1
∑

m=0

B(m;n− 1, α)F n−1−m(x)dx− (w − w)((1− α)F (w) + α)n−1.

The sum of the three expressions for the contributions to the expected payoff matches U ǫ(w)

in (3) and (5) for w > w.

Proof of Lemma 2

Fix an incentive compatible, optimal equal priority mechanism {r, w, w; t} with r ≤ w ≤ w.

When r ≤ t ≤ w, define

D = U ǫ(w)− Uµ(w) =

∫ w

r

(1− α)n−1F n−1(w)dw − χ(w,w)(w − t),

and let R be the revenue, which is the sum of (8) and (9). If 0 < r < w, or if 0 = r < w and

dr > 0, or if 0 < r = w and dr < 0, we have

∂D

∂r
= −(1− α)n−1F n−1(r);

∂R

∂r
= −n(1 − α)nF n−1(r)φ(r)f(r).
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If 0 < t < w, or 0 = t < w and dt > 0, or 0 < t = w and dt < 0, we have

∂D

∂t
= χ(w,w);

∂R

∂t
= nαχ(w,w)π′(t).

If t < w < w, or if t = w < w and dw > 0, or t < w = w and dw < 0, we have

∂χ(w,w)

∂w
=

(1− α)f(w)

(1− α)(F (w)− F (w)) + α

(

χ(w,w)− ((1− α)F (w))n−1
)

;

∂D

∂w
= (1− α)n−1F n−1(w)− χ(w,w)−

∂χ(w,w)

∂w
(w − t);

∂R

∂w
= n(1− α)((1− α)n−1F n−1(w)− χ(w,w))φ(w)f(w)

+ n((1− α)(π(w)− π(w)) + απ(t))
∂χ(w,w)

∂w
.

If w < w < 1, or if w = w < 1 and dw > 0, or if w < w = 1 and dw < 0, we have

∂χ(w,w)

∂w
=

(1− α)f(w)

(1− α)(F (w)− F (w)) + α

(

((1− α)F (w) + α)n−1 − χ(w,w)
)

;

∂D

∂w
= −

∂χ(w,w)

∂w
(w − t);

∂R

∂w
= n(1− α)

(

χ(w,w)− ((1− α)F (w) + α)n−1
)

φ(w)f(w)

+ n((1− α)(π(w)− π(w)) + απ(t))
∂χ(w,w)

∂w
.

The proof of the lemma is divided into seven steps.

(i) We claim that r ≤ t ≤ w. We can rule out t < r right away, because it violates (7). To

rule out t > w, note that in this case (7) is slack. From the expression of ∂R/∂t, concavity

of π(·) and the optimality of {r, w, w; t} together imply that t = r∗. If r < w, then since

w < t = r∗, we have r < r∗. From the expression of ∂R/∂r, a marginal increase in r would

increase (8), contradicting the optimality of {r, w, w; t}. Thus, r = w. If w < w, then from

the expression of ∂R/∂w, a marginal increase in w would increase the revenue, contradicting

the assumption of optimality. Thus, r = w = w < t = r∗. From the expressions of ∂R/∂w

and ∂R/∂w, a increase in w and w by the same marginal amount would increase the revenue,

a contradiction. Thus, t ≤ w.
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(ii) We claim that r < t < w. We can rule out r = t < w right away, because it

violates (7). To rule out r < t = w, note that in this case (7) is slack. Since r < t,

either r < r∗ or t > r∗, or both. If r < r∗, then by raising r marginally, the seller could

increase the revenue because ∂R/∂r > 0. If t > r∗, then by lowering t marginally, the seller

could increase the revenue because ∂R/∂t < 0. Either way, we have a contradiction to the

assumption of optimality. Finally, we rule out r = t = w. If r = t = w < r∗, then by

raising t marginally, the seller relaxes (7), and increases the revenue because ∂R/∂t > 0.

If r = t = w > r∗, then by lowering r marginally, the seller relaxes (7), and increases the

revenue because ∂R/∂r < 0. If r = t = w = r∗, then by lowering r marginally, the seller

relaxes (7) because ∂D/∂r < 0, without changing the revenue because ∂R/∂r = 0. With

(7) slack, the seller could then increase the revenue by either further raising w marginally if

w = r∗ < w, because φ(w) = 0 implies ∂R/∂w > 0, or by raising both w and w by the same

infinitesimal amount if w = w = r∗, because ∂R/∂w + ∂R/∂w > 0. In each case, we have a

contradiction to the assumption of optimality.

(iii) We claim that r < t < w < w. Suppose instead w = w = ŵ, and consider

decreasing both w and w by the same marginal amount. We have ∂D/∂w + ∂D/∂w < 0,

and ∂R/∂w + ∂R/∂w has the same sign as π(t) − φ(ŵ). Thus, we must have π(t) > φ(ŵ):

otherwise, the seller relaxes (7) without decreasing the revenue, which would then allow the

seller to increase the revenue by either raising r or lowering t, as r < t implies r < r∗ or

t > r∗, or both. Since φ(1) = 1, it follows from π(t) > φ(ŵ) that ŵ < 1. Consider perturbing

the equal priority mechanism by reducing w from ŵ and raising w from ŵ such that

−(χ(ŵ, ŵ)− (1− α)n−1F n−1(ŵ))dw = (((1− α)F (ŵ) + α)n−1 − χ(ŵ, ŵ))dw.

By construction,

−
∂χ(ŵ, ŵ)

∂w
dw =

∂χ(ŵ, ŵ)

∂w
dw.

This implies that (7) is relaxed, because

∂D

∂w
dw +

∂D

∂w
dw = ((1− α)n−1F n−1(ŵ)− χ(ŵ, ŵ))dw,
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which is strictly positive. The seller’s revenue is unchanged, because

∂R

∂w
dw +

∂R

∂w
dw =n(1− α)f(ŵ)

(

χ(ŵ, ŵ)− (1− α)n−1F n−1(ŵ)
)

(π(t)− φ(ŵ))dw

+ n(1− α)f(ŵ)
(

((1− α)F (ŵ) + α)n−1 − χ(ŵ, ŵ)
)

(π(t)− φ(ŵ))dw,

which is equal to 0 by construction. The seller could now increase the revenue by either

raising r or lowering t, as r < t implies r < r∗ or t > r∗, or both. This contradicts the

assumption of optimality.

(iv) We claim that (7) binds, r < r∗ < t, and π(t) > φ(w). If (7) is slack, then since

r < t implies that r < r∗ or t > r∗, or both, the seller could increase the revenue by either

raising r or lowering t, a contradiction to the assumed optimality. If r∗ ≤ r < t, the seller

could relax (7) by lowering r marginally without decreasing the revenue, which then would

allow the seller to increase the revenue by lowering t. Similarly, if r < t ≤ r∗, the seller could

relax (7) by raising t marginally without decreasing the revenue, which then would allow the

seller to increase the revenue by raising r. Finally, we show that π(t) > φ(w). Otherwise, by

lowering w marginally, the seller relaxes (7) because ∂D/∂w < 0, and increases the revenue,

as ∂R/∂w has the same sign as

α(π(t)− φ(w)) + (1− α)(π(w)− π(w))− φ(w)(F (w)− F (w))

=α(π(t)− φ(w))−

∫ w

w

(φ(w)− φ(w))f(w)dw

<α(π(t)− φ(w)),

contradicting the assumed optimality. Note that π(t) > φ(w) implies w < 1.

(v) To obtain (10), consider perturbations dw and dw, while keeping r and t unchanged.

An optimality condition is that

∂R

∂w
dw +

∂R

∂w
dw = 0,
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for all perturbations dw and dw satisfying

∂D

∂w
dw +

∂D

∂w
dw = 0.

Thus we have
∂R/∂w

∂D/∂w
=

∂R/∂w

∂D/∂w
.

Using the expressions for χ(w,w), ∂χ(w,w)/∂w and ∂χ(w,w)/∂w, straightforward algebra

lead us to the first-order condition (10) for an optimal equal priority mechanism with respect

to w and w. Also, (10) implies that

∂R/∂w

∂D/∂w
= −n(1− α)(φ(w)− φ(w))f(w).

(vi) To obtain (11), consider perturbations dt and dw. The optimality condition is

∂R/∂t

∂D/∂t
=

∂R/∂w

∂D/∂w
.

This gives the first order condition (11) with respect to t and w.

(vii) Lastly, to obtain (12), consider perturbations dr and dw, while keeping t and w

unchanged. The resulting optimality condition is

∂R/∂r

∂D/∂r
≥

∂R/∂w

∂D/∂w
,

and r ≥ 0, with complementary slackness. This gives the first-order condition

−φ(r)f(r) ≤ (φ(w)− φ(w))f(w).

Note that −φ(0)f(0) = 1. Since φ(w) < π(t) < π(r∗) < r∗, and w > t > r∗,

(φ(w)− φ(w))f(w) = (φ(w)− w)f(w) + 1− F (w) < 1.

It follows that the optimal r is interior and so (12) holds.
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Proof of Lemma 3

Fix a direct mechanism (qǫm, p
ǫ
m)

n−1

m=0
and (qµm, p

µ
m)

n

m=1
. Define pµ ∈ [0, 1] to be the expected

offer to unobservant buyers, given by

n−1
∑

m=0

B(m;n− 1, α)Ev[q
µ
m+1(v)(p

µ − pµm+1(v))] = 0.

Since max{w − p, 0} is convex in p for any w,

Uµ(w) =
n−1
∑

m=0

B(m;n− 1, α)Ev

[

qµm+1(v)max{w − pµm+1(v), 0}
]

≥

n−1
∑

m=0

B(m;n− 1, α)Ev[q
µ
m+1(v)]max{w − pµ, 0}.

Thus, replacing all functions {pµm(·)}
n
m=1 with a single offer pµ reduces the deviation payoff

of an observant buyer. The seller’s revenue from unobservant buyers is

n
∑

m=1

B(m;n, α)Ev [mqµm(v)π (pµm(v))] = nα
n−1
∑

m=0

B(m;n− 1, α)Ev

[

qµm+1(v)π
(

pµm+1(v)
)]

.

The lemma then follows from the strict concavity of π(·).

Proof of Theorem 2

Suppose that {r, w, w; t} is an optimal equal priority mechanism. By Lemma 2, the first order

conditions (10)-(12) are satisfied. We construct a non-negatively valued multiplier function

λ(w) for all w ∈ [0, 1] such that the allocative rule (qǫm(v))
n−1

m=0
and (qµm(v))

n

m=1
defined

by {r, w, w; t}, together with pµ = t, solves the Lagrangian relaxation. By Lemma 1, the

offer rule (pǫm(v))
n−1

m=0
we have specified for an equal priority mechanism supports a truthful

reporting equilibrium among observant buyers. The conclusion then follows immediately.

The proof is divided into four steps.

(i) Construction of the multiplier fucntion. Let λ(w) = 0 for all w 6∈ [w,w], and let

λ(w) = n(1− α)
d

dw
(f(w)(φ(w)− φ(w))) = n(1− α)(2f(w) + f ′(w)(w − φ(w)))
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for all w ∈ (w,w), with λ(w) and λ(w) given by the corresponding limit from above and

from below. Since by assumption π(·) is strictly concave, f(w)φ(w) is strictly increasing in

w, and thus λ(w) > 0 at any w ∈ [w,w] such that f ′(w) ≤ 0. By (10) we have φ(w) <

π(t) < π(r∗) < r∗. Since w ≥ w > t > r∗, we have λ(w) > 0 at any w ∈ [w,w] such that

f ′(w) > 0. Thus, λ(w) as constructed is non-negative for any w.

For each w ∈ [0, 1], denote

Kǫ(w) = n(1− α)φ(w) +

∫

1

w

λ(x)dx/f(w);

Kµ = nαπ(pµ)−

∫

1

0

λ(x)max{x− pµ, 0}dx.

We can then rewrite the Lagrangian as

(1− α)n−1

∫

1

0

Kǫ(w)Qǫ
0(w)f(w)dw + αn−1Kµqµn

+
n−1
∑

m=1

(
∫

1

0

B(m;n− 1, α)Kǫ(w)Qǫ
m(w)f(w)dw +B(m− 1;n− 1, α)KµQµ

m

)

,

where Qǫ
0(w) is the probability that an observant buyer with valuation w wins the object

when all buyers are observant, and qµn is the probability that each unobservant buyer wins

the object when all buyers are unobservant.

(ii) We claim that pµ = t maximizes the Lagrangian. For any w ∈ [w,w], by construction

∫

1

w

λ(x)dx = n(1− α)f(w)(φ(w)− φ(w)).

Using integration by parts, we have

∫

1

0

λ(w)max{w − pµ, 0}dw

=−

∫ w

w

(w − pµ) d

(∫

1

w

λ(x)dx

)

=n(1− α)

(

(w − pµ)f(w)(φ(w)− φ(w)) +

∫ w

w

f(w)(φ(w)− φ(w))dw

)

=n(1− α) ((w − pµ)f(w)(φ(w)− φ(w)) + φ(w)(F (w)− F (w))− (π(w)− π(w))) .
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By (10), we have

Kµ = nαφ(w) + nα(π(pµ)− π(t)) + (pµ − t)n(1− α)f(w)(φ(w)− φ(w)).

The above is strictly concave in pµ. By (11), it is maximized at pµ = t, with the maximum

Kµ
t = nαφ(w).

(iii) Comparison of Kǫ(·) and Kµ
t . For w ∈ [w,w], we have

B(m;n− 1, α)

n−m
Kǫ(w) =

B(m− 1;n− 1, α)

m
Kµ

t .

For all w > w, since π(·) is strictly concave,

Kǫ(w) = n(1 − α)φ(w) > n(1− α)φ(w) = Kǫ(w),

and so
B(m;n− 1, α)

n−m
Kǫ(w) >

B(m− 1;n− 1, α)

m
Kµ

t .

For all w < w,

Kǫ(w) = n(1− α)φ(w) +

∫ w

w

λ(x)dx/f(w) = n(1− α)(φ(w) + f(w)(φ(w)− φ(w))/f(w)).

We claim that

φ(w) +
f(w)(φ(w)− φ(w))

f(w)
< φ(w)

for all w < w, and thus Kǫ(w) < Kǫ(w) and

B(m;n− 1, α)

n−m
Kǫ(w) ≤

B(m− 1;n− 1, α)

m
Kµ

t .

To establish the claim, recall that in showing that the constructed multiplier function λ(w)

is positive for w ∈ [w,w], we have proved that f(w)(φ(w)− φ(w)) is strictly increasing in w

for all w ≥ φ(w). This immediately implies that the claim holds for any w ∈ [φ(w), w). For
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w < φ(w), we have

f(w)(φ(w)− φ(w)) = f(w)(w − φ(w))− (1− F (w)) < −(1− F (w)) < −(1− F (r∗)),

where the last inequality follows because φ(w) < π(t) < π(r∗) < r∗, while

f(w)(φ(w)− φ(w)) < f(r∗)φ(w) < f(r∗)r∗,

where the first equality comes from f(w)(φ(w)− φ(w)) being strictly increasing in w for all

w ≥ φ(w). The claim then follows from the definition of r∗.

(iv) We claim that the allocations (qǫm(v))
n−1

m=0
and (qµm(v))

n

m=1
specified by {r, w, w; t} are

a point-wise maximizer of the Lagrangian relaxation. We disaggregate Qǫ
m(w) and write the

Lagrangian as

(1− α)n−1

∫

1

0

Kǫ(w)Qǫ
0(w)f(w)dw+ αn−1Kµ

t q
µ
n

+
n−1
∑

m=1

Ev

[

B(m;n− 1, α)

n−m

n−m
∑

i=1

Kǫ(vi)q
ǫ
m(ρ

i
m(v)) +B(m− 1;n− 1, α)Kµ

t q
µ
m(v)

]

.

Fix any realized number m of unobservant buyers such that 1 ≤ m ≤ n−1, and consider

the last term in the above objective function. Suppose that for some realized valuation

profile v we have vi > w for some i = 1, . . . , n−m, but qµm(v) > 0. By (2), we can decrease

qµm(v) marginally by dqµm(v) > 0 and increase qǫm(ρ
i
m(v)) by mdqµm(v). Since

m

n−m
B(m;n− 1, α)Kǫ(vi) > B(m− 1;n− 1, α)Kµ

t ,

the effect on the seller’s revenue is strictly positive. Therefore, qµm(v) = 0 for any v such that

vi > w for some i = 1, . . . , n−m. Further, since Kǫ(w) is strictly increasing for w > w, we

have qǫm(ρ
i
m(v)) = 1 for vi = max{v1, . . . , vn−m}. Finally, since

B(m;n− 1, α)

n−m
Kǫ(w) ≤

B(m− 1;n− 1, α)

m
Kµ

t .

for all w ≤ w, with equality if w ∈ [w,w], if v is such that max{v1, . . . , vn−m} ≤ w,
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there is a maximizer of the Lagrangian such that qǫm(ρ
i
m(v)) = 0 whenever vi < w, and

qǫm(ρ
i
m(v)) = qµm(v) if vi ∈ [w,w].

For m = 0 and the first term in the Lagrangian, the strict concavity of π(·) implies Kǫ(w)

for w < w crosses 0 at most once and only from below. Thus, for r that satisfies (12), it is

point-wise maximizing to set qǫ0(ρ
i
0(v)) = 1 if vi = max{v1, . . . , vn} and vi > w, or if vi =

max{v1, . . . , vn} and vi ∈ [r, w); set qǫ0(ρ
i
0(v)) = 1/k if vi ∈ [w,w], max{v1, . . . , vn} ∈ [w,w]

and #{j : vj ∈ [w,w]} = k; and set qǫ0(ρ
i
0(v)) = 0 otherwise.

For m = n and the second term in the Lagrangian, it is optimal to set qµn = 1/n because

Kµ
t > 0.
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