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Abstract: We consider a two-sided, finite-horizon search and matching model with

heterogeneous types and complementarity between types. The quality of the pool of po-

tential partners deteriorates as agents who have found mutually agreeable matches exit

the market. When search is costless and all agents participate in each matching round, the

market performs a sorting function in that high types of agents have multiple chances to

match with their peers. However, this sorting function is lost if agents incur an arbitrarily

small cost in order to participate in each round. With a sufficiently rich type space, the

market unravels as almost all agents rush to participate in the first round and match and

exit with anyone they meet.
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1. Introduction

Many entry-level markets for professionals (e.g., academic economists, hospital interns,

and federal law clerks) are organized around annual recruitment cycles. Some markets

use centralized matching procedures, such as the celebrated Gale-Shapley deferred accep-

tance algorithm used to match interns to hospitals in both the U.K. and North America

(e.g., Roth, 1984; Roth and Xing, 1994). In these markets, participants use interviews to

gather information about each other before submitting their preferences to a central clear-

inghouse, which makes all matches according to a pre-specified algorithm. In contrast,

matches are typically formed sequentially in a decentralized market. For example, in the

North American market for academic economists, information about candidates and aca-

demic positions is gathered from applications, interviews and campus visits, and matches

are made in sequence throughout the recruitment cycle. Matching opportunities change

over time as participants exit the market after successful searches. The non-stationarity

of the search process and its implications for search and matching efficiency have received

some recent attention from economists interested in comparing centralized and decentral-

ized match-making. For example, in their study of the market for clinical psychologists,

Roth and Xing (1997) describe how market participants sometimes choose to match with

less desirable partners lest the pool of acceptable matching partners dries up quickly. Since

market participants cannot consider more than a few choices simultaneously, the frenzy in

the early stages of the market results in reductions in market scope and sorting efficiency.1

In a similar vein, Niederle and Roth (2003) use data from the entry-level market for Ameri-

can gastroenterologists to show that after the market was decentralized, gastroenterologists

are more likely to be employed at the same hospital in which they were residents.

The relationship between search and evolving matching opportunities introduces in-

teresting considerations in search dynamics and sorting efficiency. These considerations

have not been adequately analyzed in the existing theoretical literature, which focuses on

1 A different type of sorting inefficiency involves mismatches because information about quality of
applicants and about positions is not yet available when participants sign early contracts (Li and Rosen,
1998; Li and Suen, 2000; Suen, 2000). Early contracting occurs in this type of models because it provides
insurance benefits to risk-averse participants.
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steady state analysis (Burdett and Coles, 1997; Shimer and Smith, 2000a). One excep-

tion is Jackson and Palfrey (1998), who study how bargaining procedures affect the search

outcome in a model where heterogeneous buyers and sellers meet randomly and leave the

market after successful trade. We are instead interested in the search process in the con-

text of matching markets, where participants are heterogeneous and matching efficiency

arises from complementarity.2 In our stylized model, a job market operates in two rounds.

Applicants differ in a one-dimensional, continuous quality, called “type,” and so do firms.

We assume the match value function exhibits complementarity between worker type and

firm type, so that in a frictionless matching environment, the perfect sorting that matches

the highest quality worker to the highest quality firm and so on, maximizes the total match

output. In our matching market, search frictions exist and meetings are random. In the

first round market, participants decide whether or not to form a match upon meeting each

other. If they do, they get their match payoffs and withdraw from the market. Otherwise,

they proceed to the second round, where all remaining agents again meet randomly. Since

this is the last round, they match with whomever they meet. We investigate whether there

will be excessive search and matching in the first round.

In our benchmark model, there is no participation cost, and all agents participate in

the first round market. Equilibrium involves a uniform threshold such that an applicant

accepts an offer from a firm if the latter’s type exceeds the threshold, and waits for the

second round otherwise. If all applicants and firms follow this strategy, types lower than

the threshold will not find a match and will participate in the second round market. The

presence of these low types in the first round market imposes a negative search externality

on the higher types, so that some of the latter will not be lucky enough to find an acceptable

match and will also participate in the second round market. In equilibrium the negative

search externality is such that the expected type in the second round market equals the

acceptance threshold. In this equilibrium, the job market performs a “dynamic sorting”

function by giving higher types a better chance to match with their peers and realize their

2 Smith (1995) first studies an infinite-horizon matching model with no entry, where non-steady state
dynamics is driven by temporary matches that are formed because finding acceptable partners takes time
and waiting is costly in terms of foregone production. Shimer and Smith (2000b) examine the possibility
that efficient search and matching requires non-stationarity.
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higher match values. It turns out that the equilibrium level of search externality is optimal

in the sense that the total match value cannot be increased by changing the threshold.

The dynamic sorting function of the job market is robust to alternative modeling

assumptions, including asymmetric type distributions and match value functions, more

than two matching rounds, and discrete types. However, this dynamic sorting unravels if

applicants and firms have to incur a small cost in order to participate in each round of

the market. This is because the negative search externality is crucial to dynamic sorting,

and it is destroyed by the participation cost. To begin, agents of type lower than the

acceptance threshold have no reason to pay the cost to be in the first round market since

they face zero probability of forming a match. As these types withdraw, the quality of

the first round pool improves, so higher types now have greater chances of meeting their

peers and they exit the market in greater numbers. As a result, the quality of the second

round pool worsens. But this division into a high quality market in the first round and a

low quality market in the second round cannot be an equilibrium. The best types in the

low quality second round pool would be acceptable in the first round, and would therefore

have incentives to join the first round. As more of the best types from the second round

market join the first round market, the pool in the second round worsens further, which

lowers the acceptance threshold in the first round still further. When the participation

cost is arbitrarily small, the market loses its sorting function as almost all agents rush to

participate in the first round and match with just about anyone they meet. The second

round market collapses. Needless to say, such unraveling outcome is very inefficient, even

though the participation cost is arbitrarily small.

Our result that almost no sorting can be achieved with an arbitrarily small participa-

tion cost depends on the assumption that types are continuously distributed. When the

type space is discrete, with costless, sequential participation, a different kind of sorting

emerges as equilibrium which does not rely on the negative search externality responsible

for the sorting equilibrium in the continuous type case. For example, when there are two

types on both sides and two rounds of search, it is an equilibrium that high type agents

participate in the first round and accept only high type agents while low type agents wait

and participate in the second round. Since the two types are segregated, sorting does not
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rely on the search externality, and our previous unraveling argument does not apply. In

fact, for small participation costs, there is a mixed strategy equilibrium (in participation

and acceptance decisions) whose outcome is close to the perfect sorting outcome. More

generally, when there are at least as many rounds of matching as the number of types,

almost perfect sorting is an equilibrium outcome for small participation costs. However,

if there are more types than the number of matching rounds, sorting inefficiency becomes

significant. For any fixed number of matching rounds, as the type space becomes richer,

the types that can be almost perfectly sorted are increasingly concentrated at the bottom

of the type distributions. Our unraveling result obtains again in the sense that almost all

types randomly match and exit in the first round with no sorting.

2. A Non-stationary Matching Model

To analyze how the search process interacts with matching opportunities over time, we

consider a finite-horizon, two-sided matching market where there is no infusion of new

agents in the relevant horizon. Matching can occur in any of the several matching rounds,

but agents leave the market once they form a match. The distribution of agents changes

endogenously over time. Agents decide whether to search and whether to form a match

based on their expectations about future matching opportunities. The flavor of our main

results can be conveniently conveyed in a model with two rounds. The extension to multiple

matching rounds will be discussed later.

Agents on each side of the market differ in a one-dimensional productive characteristic,

called “type.” Types of agents on the two sides of the market are distributed continuously

and symmetrically on the support [a, b] ⊂ (0,∞), with density function f and distribution

function F . Our results will be extended to asymmetric type distributions later. Through-

out the paper, the two sides of the market are assumed to have the same size. Continuous

type space is a simple representation of matching environments where the number of in-

terview rounds is limited relative to the number of types, because the needs and matching

characteristics of participants are diverse and activities such as application, interviewing,

and decision-making take time. In other markets, relevant information about qualities of
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participants may not be so refined due to difficulties in observing match characteristics or

idiosyncrasies in evaluating potential matches. These markets are better represented by a

model with a discrete type space, and the implications will be addressed later.

We assume complementarity between agents’ types. In particular, match value to a

type x agent, if matched with a type y agent on the other side of the market, is xy. In

our symmetric model, complementarity implies that the total match value is maximized

by the “perfect sorting,” where each type x agent is paired with a type y = x agent on the

other side of the market. All our results extend to the class of more general match value

functions that are multiplicatively or additively separable, and monotone in types. This

class includes, for example, the match value function used by Burdett and Coles (1997).

However, since additively separable match value functions do not exhibit complementarity

between types, how types are matched does not affect the total match value and therefore

sorting efficiency is not an issue.3 Given our focus on the sorting efficiency in a non-

stationary environment, we need a match value function that exhibits complementarity

and choose xy for simplicity.

We adopt a simple search technology in our model: if the type distribution function is

G, then the probability that any type x agent meets an agent of type y or lower from the

other side of the market is G(y). Later on we modify this random meeting technology to

accommodate different distributions of types and masses of participants on the two sides of

the market. If the market operates for only one round, all types are randomly matched and

there is no sorting. We refer to this outcome as the “random matching,” which represents

the opposite extreme of the perfect sorting in our model in terms of total match value.

Our objective is to investigate whether better sorting can be achieved by multiple search

rounds in a non-stationary environment. While more realistic representations of search

frictions have been considered in the literature (Montgomery, 1991; Lagos, 2000; Shimer,

2001), we choose the simple random meeting technology because it makes the evolution

3 In our model all agents are matched with probability 1 and there is no discounting. Without these
assumptions, the total match value may depend on the search and matching decisions even when the match
value function is additively separable. This type of inefficiency is outside the focus of the present paper.

– 5 –



of the distribution of types analytically more tractable.4 Moreover, the random meeting

technology does not exhibit any scale effect, and this allows us to focus on efficiency gains

that arise solely from better sorting.

A few additional assumptions are in order. First, agents who fail to find a match at the

end of all matching rounds suffer a large cost, which we normalize by assuming an outside

option value of 0 for all types. Since all matches have strictly positive values, every agent

prefers any match to the outside option. Later we extend our results to situations where

some agents face binding outside options. Next, we assume that agents are risk-neutral, and

do not discount. Adding a discount factor does not change our conclusions qualitatively.

Further, it is reasonable to assume no-discounting in a setup where production takes place

only after the conclusion of the job market regardless of when matches are formed. Finally,

we assume that there are no side payments.5 This assumption is appropriate in matching

markets where wage bargaining plays a minor role in match formation (e.g., dating and

marriage, tenure track academic positions, and federal law clerks).

The remainder of the paper is organized as follows. In Section 3 we consider the case

of no participation cost, and demonstrate gains in sorting efficiency achieved by dynamic

sorting in multiple search rounds. Section 4 shows that an arbitrary small participation

cost causes unraveling of dynamic sorting and reduces it to the random matching. In

Section 5 we investigate how the unraveling result depends on the richness of the type

space. Section 6 concludes the paper with a brief summary and some final remarks.

3. Full Participation and Dynamic Sorting

Since an unmatched agent gets a payoff of 0, agents accept anyone they meet in the second

(and last) round of the market. Anticipating this, an agent of type x agrees to match with

4 In the search and matching literature, random meeting technology is sometimes referred to as “linear,”
as opposed to “quadratic” (e.g. Smith, 1995). With a quadratic search technology, the matching payoff
of any agent is unaffected by the matching decision of agents with whom he is not willing to match. This
rules out negative search externality that is crucial for our results.

5 It is straightforward to define full participation equilibria with side payments under some bargaining
rule, say Nash bargaining. With specific assumptions on the type distribution (uniform) and the match
value function (symmetric power functions), we are able to show that if complementarity between types
is strong enough, costless search leads to dynamic sorting and unraveling occurs with costly participation.
Whether these results are general is subject of future research.
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y in the first round if and only if xy ≥ xm, where m is the symmetric expected type in

the second round. This implies a uniform acceptance threshold m for all types of agents.

Note that types lower than m are rejected by all types in the first round. Nevertheless,

since participation is free, these low types have no reason to skip the first round search.

Indeed, any robustness criterion that allows for a small chance that agents make mistakes

in acceptance decisions would ensure full participation in the first round market.

Given any first round acceptance threshold k, the expected type m in the second

round market is determined by the distribution of types that remain unmatched after the

first round. Since two agents match and leave the market only when each agent’s type is

greater than k, the relative size of the second round market is R(k) = 1 − (1 − F (k))2.

Then, m is determined by k according to:

m(k) =
∫ b

a

x dG(x; k),

where G(x; k) is the distribution of types in the second round, given by

G(x; k)R(k) =

{
F (x), if x ≤ k;

F (k) + (F (x)− F (k))F (k), if x > k.

Since R(a) = 0, the above does not define m(a). Let us define m(a) by continuity:

m(a) = lim
k→a

m(k). (3.1)

We can verify that G(x; k) stochastically dominates G(x; k′) if k > k′. It follows that

m′(k) > 0 for any k ∈ (a, b).

Definition 3.1. A threshold type ke is a full participation equilibrium if ke = m(ke).

An equilibrium in our model occurs when the expected type m(k) that results from an

acceptance threshold k precisely justifies k. The above reference to full participation is to

distinguish the equilibrium defined here from later definitions of equilibrium when search

is costly and participation is endogenous. Our first result characterizes the existence and

uniqueness of an equilibrium with an interior threshold ke.

Proposition 3.2. (i) A full participation equilibrium ke ∈ (a, b) exists; and (ii) it is

unique if the type distribution F (x) is log-concave.
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Proof. (i) By definition, we have:

m(b) =
∫ b

a

x dF (x) < b;

m(a) = lim
k→a

(∫ k

a

xf(x)
R(k)

dx +
∫ b

k

xf(x)
2− F (k)

dx

)
=

1
2
a +

1
2

∫ b

a

xf(x) dx > a.

Since m(k) is a continuous function, by the Intermediate Value Theorem, an equilibrium

ke ∈ (a, b) exists.

(ii) Write m(k) as:

m(k) = w(k)q(k) + (1− w(k))Q(k), (3.2)

where q(k) = E[x | x < k], Q(k) = E[x | x ≥ k], and w(k) = F (k)/R(k). Take derivative

of equation (3.2), we get

m′(k) = w(k)q′(k) + (1− w(k))Q′(k) + w′(k)(q(k)−Q(k)).

If F is log-concave, then q′(k) < 1 and Q′(k) < 1 (An, 1998). Further, q(k) < Q(k) and

w′(k) > 0. Thus, m′(k) < 1, implying a unique equilibrium. Q.E.D.

It is evident from the above proof that the existence of an equilibrium with an interior

threshold ke does not depend on the definition of m(a). On the other hand, our definition

of m(a) (equation 3.1) rules out k = a as an equilibrium. Letting m(a) = a makes k = a

an equilibrium according to Definition 3.1, but it would not be robust. For example,

if agents who are indifferent between accepting their match and waiting for the second

round “tremble” with an arbitrarily small probability and reject their match, the second

round mean would be strictly greater than a, making it non-optimal to accept type a.

The uniqueness of equilibrium depends on a characterization of the slope of m(k). Since

m′(k) > 0, in general expectations about the prospects in the second round market can

be self-fulfilling and multiple equilibria may occur.6 Proposition 3.2 uses a log-concavity

6 The issue of multiple equilibria is certainly interesting, but is orthogonal to the purpose of the present
paper. Li and Suen (2004) deal with the issue of multiple equilibria in an early contracting model based
on the trade-off between insurance benefits and sorting inefficiency.
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condition on the type distribution to rule out multiple equilibria.7

In an equilibrium with an interior first round threshold ke, the market performs a

sorting function by giving types higher than ke a better chance to match with their peers

and realize their higher match values. How large is the efficiency gain from dynamic

sorting relative to the random matching? For a numerical example, consider the uniform

type distribution F on [1, 2], which is log-concave. The unique equilibrium is given by

ke = 1.38, with a total match value of V ∗ = 2.272, compared to a total match value

of V 0 = 2.25 under the random matching. The percentage gain from dynamic sorting

seems small, less than 1%, but it would be significantly greater if either the support of

the types is wider ([1, 10] instead of [1, 2]), or the match value function exhibits stronger

complementarity (x2y2 instead of xy). To isolate the sorting gains from any effect that

may arise from rescaling the types, we need a more accurate measure. In our present

example with uniform type distribution on [1, 2] and match value function xy, the total

match value from the perfect sorting is only V∞ = 2.333. This suggests that we measure

the efficiency gain by (V ∗ − V 0)/(V∞ − V 0), which implies a relative gain of 26.5% from

dynamic sorting.

Dynamic sorting through selective first round acceptance is imperfect due to the kind

of search frictions we have imposed. An interesting question is whether it can be improved

without changing the search technology. We ask: are agents in the market too selective, or

do they rush to match in the first round? To answer this question, consider the problem

of choosing a threshold type k to maximize the total match value

V (k) = (1−R(k))Q2(k) + R(k)m2(k).

The next result shows that the sorting efficiency of dynamic sorting cannot be improved.

Proposition 3.3. If k∗ maximizes the total match value, then k∗ is a full participation

equilibrium.

7 Unlike in Burdett and Coles (1997), in our model log-concavity is not required for the existence of a
non-stationary equilibrium, and is instead used to ensure uniqueness of equilibrium. In fact, log-concavity

of the function
∫ x

a
F (t) dt suffices to guarantee uniqueness of equilibrium. We use a stronger condition,

namely log-concavity of F (x), in order to simplify the proof.
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Proof. The derivative V ′(k) of V (k) with respect to k is given by

2(1−R(k))Q(k)Q′(k) + 2R(k)m(k)m′(k)−R′(k)(Q(k)−m(k))(m(k) + Q(k)). (3.3)

Note that for all values of k, m(k) and Q(k) also satisfy the relationship,

(1−R(k))Q(k) + R(k)m(k) = mu,

where mu is the unconditional mean of the distribution F of types. Differentiating the

above identity with respect to k, we have

(1−R(k))Q′(k) + R(k)m′(k)−R′(k)(Q(k)−m(k)) = 0.

Substituting the above into equation (3.3), with a few steps of manipulations we get

V ′(k) = 2(Q(k)−m(k))f(k)(1− F (k))(m(k)− k).

Since V ′(a) > 0 and V ′(b) < 0, the optimal threshold k∗ is interior and satisfies V ′(k∗) = 0.

Thus, m(k∗) = k∗ and k∗ is an equilibrium threshold. Q.E.D.

Equation (3.3) in the proof of Proposition 3.3 shows that raising the first round ac-

ceptance threshold k has two opposite effects on the total match value. On one hand, since

Q′(k) > 0 and m′(k) > 0, an increase in the acceptance threshold from its equilibrium

value improves the quality of matches realized in both the first round and the second round.

This suggests that agents may not be selective enough in their choice of matching partners

in the first round. On the other hand, since R′(k) > 0, raising the first round acceptance

threshold increases the size of the second round market, which has a lower match quality.

Proposition 3.3 establishes that there is an equilibrium in which these two effects exactly

cancel each other, so that the total match value is maximized.

We do not intend Proposition 3.3 as a statement regarding constrained efficiency of

the dynamic sorting outcome. To define constrained efficiency, one would need to be more

rigorous about the restrictions on the search technology, and on the participation and

acceptance decisions faced by a hypothetical social planner. It would seem reasonable to
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maintain the assumption of random pairwise meeting for the planner, but even with this

restriction on the search technology, the planner can improve sorting efficiency by limiting

participation of low types or by adopting a type-dependent acceptance rule in the first

round. Jackson and Palfrey (1998) characterize constrained efficiency in a non-stationary,

two-sided random matching environment with heterogeneous agents, but with a match

value function arising from the buyer-seller bargaining problem.8 While their techniques

can be used to address the issue of constrained efficiency in our model, we will not pursue

this line because our focus is on comparing sorting efficiency under costless and costly

search. Before introducing costly search and endogenous participation, in the remainder

of this section we provide separate extensions of our dynamic sorting result to asymmetric

type distributions and multiple matching rounds. These extensions further illustrate the

intuition of how dynamic sorting improves upon the random matching, but they are not

critical for understanding our unraveling arguments in Sections 4 and 5.

Asymmetric type distributions. Now we relax our strong symmetry assumptions that

the two sides of the market have the same type distribution and that the match value

function takes the symmetric product form. Suppose the match value function is xy but

the two sides, X and Y , have different type distributions, FX and FY , on [aX , bX ] and

[aY , bY ] respectively. Note that there is no loss of generality in assuming the match value

function xy, as any multiplicatively separable match value function (with constant-sign

cross derivatives) can be converted into xy if we redefine the types. In this asymmetric

search model, an equilibrium is given by two acceptance thresholds kX and kY , such that

in the first round market kX is the marginal type of X-agents that Y -agents are willing

to accept, and kY is the marginal type of Y -agents that X-agents are willing to accept.

In equilibrium matches are formed in the first round market when types x ≥ kX and

y ≥ kY meet with each other, with kX equal to the expected type mX of X-agents in the

second round and kY equal to the expected type mY of Y -agents. As mX and mY are

functions of both kX and kY , an equilibrium corresponds to a fixed point (kX , kY ) in the

8 Jackson and Palfrey (1998) focus on a two-period model. Palfrey (1997) extends their characterization
of constrained efficiency to an arbitrary sequence of periods.
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mapping of mX and mY . With the values of mX and mY at kX = aX or kY = aY defined

in the same way as in (3.1), the mapping of mX and mY is continuous, implying the

existence of an equilibrium by Brouwer’s fixed point theorem. The following proposition

shows that if a pair of acceptance thresholds maximizes the total match value, then it

forms an equilibrium. The proof is similar to that of Proposition 3.3 and is relegated to

the Appendix.

Proposition 3.4. If (k∗X , k∗Y ) maximizes the total match value in the asymmetric model,

then (k∗X , k∗Y ) is a full participation equilibrium.

Multiple matching rounds. To provide a general definition of equilibrium with T

matching rounds, let Gt be the symmetric type distribution in round t and kt be the

acceptance threshold type for each t = 1, . . . , T . In the first round of the market, G1 is

just F , the initial type distribution.

Definition 3.5. A sequence of threshold types k1, k2, . . . , kT = a and a sequence of type

distributions G1 = F, G2, . . . , GT , are an equilibrium if (i) for any t = 1, 2, . . . , T − 1,

Gt+1(x)Rt+1(kt) =

{
Gt(x), if x ≤ kt;

Gt(kt) + (Gt(x)−Gt(kt))Gt(kt), if x > kt;
(3.4)

where Rt+1(kt) = 1 − (1 − Gt(kt))2 is the relative size of the round t + 1 market with

respect to the round t market; and (ii) for any t = 1, . . . , T − 1,

kt = Gt+1(kt+1)kt+1 +
∫ b

kt+1

x dGt+1(x). (3.5)

According to the above definition, in each round t, only types higher than kt have a

positive probability of being matched.9 Further, the second equilibrium condition implies

9 An induction argument can be used to establish that equilibrium matching is determined as if accep-
tance thresholds are uniform in each round. To see this, consider the case of T = 3. We already know that
in round 2 there is a uniform acceptance threshold, say k2, which equals the expected type in round 3. In
round 1, the acceptance threshold for types below k2 is k2, as they will not match in round 2. For types
above k2, the acceptance threshold, say k1, is higher than k2 because they have a positive probability of
matching with types above k2 in round 2. Thus, even though there are two different acceptance thresholds
in round 1, only types above k1 have a positive probability of being matched.
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that kt > kt+1 for each t. Any equilibrium involves a decreasing sequence of accep-

tance thresholds k1, . . . , kT , so that agents in equilibrium become increasingly less picky

as matching proceeds over time, and correspondingly, the sequence of type distributions

is ordered by stochastic dominance: Gt first order stochastically dominates Gt+1 for each

t = 1, . . . , T − 1. Finally, Definition 3.5 assumes that the market does not end before the

final round T . The justification for this follows the same logic as Proposition 3.2. If the

market were to end in round t < T − 1, with kt = a, then for any type distribution Gt at

the beginning of round t, the expected match type from waiting for another round would

be given by (1/2)a + (1/2)
∫ b

a
xGt(x) dx, which is greater than a. Thus, agents who were

accepting types marginally higher than a in round t market were not making the optimal

decision, implying that the market cannot end in round t.

Proposition 3.6. (i) An equilibrium in the T -round model exists with k1 < b; and (ii)

equilibrium is unique if the initial distribution of types F is log-concave.

The proof of Proposition 3.6 is rather involved and is relegated to the Appendix. The

main technical difficulty lies in the fact that the matching decisions are determined by a

backward induction through equation (3.5), while the evolution of matching opportunities

is determined by a forward induction through equation (3.4). We overcome this difficulty

by introducing an algorithm that iterates back and forth between equations (3.4) and (3.5)

and reducing the equilibrium relations to a two-round problem.

For any sequence of acceptance thresholds k1, . . . , kT−1, the expected total match

value is given by:
T∑

t=1

Πt
s=1Rs(ks−1)

(∫ b

kt

x dGt(x)

)2

,

where R1(k0) = 1, and where the sequence of type distributions G1 = F,G2, . . . , GT satisfy

equation (3.4). Imagine that a sequence of acceptance thresholds k1, . . . , kT is chosen to

maximize the expected total match value. If the optimal sequence is a decreasing sequence,

then it is an equilibrium in the T -round matching model. The proof is in the Appendix.

Proposition 3.7. There is an equilibrium sequence of thresholds, k1, . . . , kT , that maxi-

mizes the expected total match value among all decreasing sequences.
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With more rounds of matching, dynamic sorting becomes significantly more efficient.

In our previous example of uniform type distribution on [1, 2], with three rounds of match-

ing, the unique equilibrium acceptance thresholds are k1 = 1.48 and k2 = 1.32. The

resulting total match value is V ∗∗ = 2.284. According to the efficiency measure introduced

earlier, in this example a matching market with three rounds achieves the efficiency level of

(V ∗∗ − V 0)/(V∞ − V 0), which represents 40.7% of the available efficiency gain, compared

to the efficiency gain of 26.5% with two rounds of matching.

4. Endogenous Participation and Unraveling

In the model of the previous section, agents do not choose to search. They appear in the

first round market even if they have no chance of forming a match. This is innocuous if

there is no cost of participating in the market. But by appearing in the market without any

prospect of getting matched, agents of lower types impose a negative search externality on

others who intend to match. Ironically, such negative externality turns out to be necessary

for the market to perform the sorting function. High type agents who happen to meet a

low type agent in the first round have to try their luck again in the second round market,

so the externality imposed by low type agents helps preserve the quality of the pool in

the second round market. In this section, we show that the externality is destroyed by

a participation cost, and as a result, matching opportunities in the second round market

deteriorate, leading to a collapse of the second round market.

The intuition of the unraveling argument in this section can be readily grasped when

the match value function is additively separable. For example, suppose that the match

value is x+y to both a type x agent and a type y agent who decide to match, and imagine

that each round of search costs c to an agent. Then, if the expected type in the second

round market is m, a type y agent is acceptable to any type x agent in the first round if

and only if y ≥ m − c. Types lower than m − c will not participate in the first round for

any positive participation cost, since they would never be accepted. As no unacceptable

types participate in the first round, there is no search externality, and all participating

types will find an agreeable partner and exit the market after the first round. It follows
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that if all types above some threshold l participate in the first round market, the average

participating type in the first round market is Q(l) while the expected type m in the second

round market is q(l). But this kind of sorting cannot work for any l > a: we already know

that l cannot be lower than m− c; l cannot be equal to m− c either, because otherwise it

would not be true that m equals q(l); if instead l > m− c, then types just below l would

be acceptable to all types in the first round market and would strictly prefer to enter.

A more rigorous argument can be used to establish an unraveling result: with any pos-

itive participation cost, in equilibrium all types participate and are randomly matched in

the first round market. However, this unraveling has no implications to matching efficiency,

because any matching outcome yields the same total match value when the match value

function is additively separable. In contrast, unraveling can have important effects when

the match value function exhibits complementarity between types. This section establishes

a similar unraveling result with the match value function xy: when c is arbitrarily close to

zero, the equilibrium outcome becomes arbitrarily close to the random matching. A small

participation cost thus dramatically reduces the sorting efficiency achieved by dynamic

sorting. The argument is more complicated than in the case of x + y, because we need to

prove that participation decisions are characterized by a threshold, and more importantly,

acceptance decisions are no longer type-independent. Non-uniform acceptance decisions

imply that some sorting is possible with a significant participation cost c. However, when c

becomes arbitrarily small, acceptance decisions become almost uniform and the model be-

haves similarly as in the case of an additive separable match value function. An argument

similar to the heuristic argument above then leads to the unraveling result.

For ease of exposition, we make two simplifying assumptions: the participation cost c

is type-independent, and c < a2. The second assumption ensures that even the lowest type

agent will participate in the matching market at least once. Later in this section we show

how both assumptions can be relaxed. Now we first consider participation decisions in the

first round. The following lemma shows that the payoff gain from participating in the first

round market satisfies a single-crossing property, and therefore participation decisions are

characterized by a threshold.
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Lemma 4.1. There exists a threshold l ∈ [a, b] such that types higher than l participate

in the first round market, and types lower than l wait for the second round market.

Proof. In the first round market, conditional on participation, a match between type x

and type y is mutually agreeable if and only if xy ≥ xm − c and xy ≥ ym − c. Consider

the participation decision in the first round by an agent of type x. It is optimal for type

x agent to participate in the first round market if

E[p(x, y)xy + (1− p(x, y))(xm− c)]− c ≥ xm− c,

where the expectation is taken with respect to the distribution of y types that participate

in the first round market, and p(x, y) is the probability that agents of types x and y form

a match. The above inequality can be written as:

E[p(x, y)y + (1− p(x, y))(m− c/x)] ≥ m. (4.1)

Any type x′ > x agent can follow the same acceptance strategy of type x, and can guarantee

that p(x′, y) = p(x, y) for any y by rejecting any type y that is willing to accept type x′

but not type x. Since m − c/x is increasing in x, the above strategy implies that it is

optimal for type x′ to participate.10 Q.E.D.

An agent who rejects a match in the first search round will incur the participation

cost again in the second round. Since agents of higher types have relatively more to gain

from finding a good match, they are more willing to incur the cost c. Unlike the model

of Section 3, therefore, acceptance thresholds differ across participating types in the first

round market. Fix an expected type m ∈ [a, b] of the second round. For each type x, let

u(x) = m− c

x
.

10 We adopt the convention that an agent chooses participation when he is indifferent between par-
ticipation and waiting. Otherwise, it is possible to construct equilibria with non-threshold participation
decisions. In any such equilibrium, all first round participants are accepted with probability 1, and the
expected participating type in the two rounds is the same, and hence equal to mu. The expected total
match value in any of these equilibria is the same as under the random matching.
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v(x)

u(x)

(b,b)

(l,l)

Figure 1

When u(x) lies between a and b, it represents the lowest type that type x is willing to

accept. Similarly, define

v(x) =
c

m− x
.

When v(x) lies between a and b, it is the highest type that is willing to accept type x. Note

that (i) u(x) is increasing and concave, and v(x) is increasing and convex; (ii) there are at

most two intersections of u(x) and v(x); and (iii) u(x) = x = v(x) at any intersection x. If

the threshold for participation in the first round market is l, a match between participating

types x and y is mutually acceptable if and only if

min{v(x), b} ≥ y ≥ max{u(x), l}. (4.2)

Figure 1 shows the functions u(x) and v(x) when there is an intersection of u and v

in [a, b]× [a, b]. Also shown is a square box [l, b]× [l, b] which represents the pool of agents

participating in the first round market, with l above the intersection. Random encounters

that fall in the shaded region result in matches in the first round. The pool of agents in the

second round market consists of all types below l, as well as types above l whose random

encounter in the first round does not satisfy the matching rule (4.2). For fixed m and l,

the second round type distribution, G(x; m, l), is given by

G(x; m, l)R(m, l)

=

{
F (x), if x ≤ l;

F (l) +
∫ x

l
(1− F (min{v(x), b}) + F (max{u(x), l})− F (l)) dF (x)

1−F (l) , if x > l

(4.3)
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where R(m, l) is the size of the market in the second round, given by

R(m, l) = F (l) +
1

1− F (l)

∫ b

l

(1− F (min{v(x), b}) + F (max{u(x), l})− F (l)) dF (x).

The second round expected type resulting from m and l is then given by
∫ b

a
x dG(x;m, l).

Note that the definition of G(x; m, l) (equation 4.3) remains valid when u and v do not

intersect in [a, b]× [a, b].

For other values of m and l, we can use (4.2) to define the resulting second round

mean similarly. The only exception occurs when l = a and m ≤ a + c/b. In this case, the

monotonicity of u implies that u(x) < a for any x ∈ [a, b]. All types accept each other and

exit in the first round, and hence R(m, a) = 0. As in equation (3.1), we use continuity

to define the resulting second round expected type in this case as liml→a

∫ b

a
x dG(x;m, l).

Since m < l + c/b for any l > a, all participating types accept each other and exit in the

first round. We have R(m, l) = F (l), and

G(x; m, l)F (l) =

{
F (x), if x ≤ l;

F (l), if x > l,
(4.4)

implying that for any m ≤ a + c/b,

∫ b

a

x dG(x; m, a) = lim
l→a

q(l) = a. (4.5)

Definition 4.2. An endogenous participation equilibrium is a participation threshold

le ∈ [a, b] and an expected type me ∈ [a, b] for the second round market, such that (i)

given me, any type x ≥ le prefers participating in the first round market and any type

x < le prefers waiting for the second round market; and (ii) me =
∫ b

a
x dG(x;me, le).

We first construct an equilibrium that will play a prominent role in the discussions

below. In such an equilibrium, le = a and me = a, hence the second round market ceases

to operate as all agents rush to form matches in the first round with anyone they happen

to meet. This unraveling outcome is the same as the random matching.

Proposition 4.3. For any participation cost c such that 0 < c < a2, le = a and me = a

is an endogenous participation equilibrium.
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Proof. Condition (i) of Definition 4.2 is satisfied by l = a and m = a. If m = a, then

u(b) < a. By the monotonicity of u, we have u(x) < a and u(a) < x for any x ∈ [a, b].

Then, if l = a, type a is accepted with probability 1 and gets a payoff of mu, which is

strictly greater than m = a. By Lemma 4.1, all types strictly prefer participation in the

first round. Condition (ii) of Definition 4.2 is satisfied, because le = a and me = a ≤ a+c/b

imply that
∫ b

a
x dG(x; a, a) = a by (4.5). Q.E.D.

The construction of the unraveling outcome as an endogenous participation equilib-

rium relies on our definition that the second round mean is a for m and l such that

R(m, l) = 0 (equation 4.5). Note that at l = a and any m < a + c/b, any other definition

would make the map from given m and l to the second round expected type discontin-

uous. This implies that as long as c > 0, the construction of the unraveling equilibrium

in Proposition 4.3 is justified by continuity and is therefore robust to small perturbations

to participation or acceptance decisions. On the other hand, at l = a and m = a + c/b,

the map from m and l to the second round expected type cannot be made continuous

under any definition of the expected type, because liml→a

∫ b

a
x dG(x; a + c/b, l) = a, while

limm↓a+c/b

∫ b

a
x dG(x; m, a) > a (because for any m > a + c/b, but small enough so that

u(b) < v(a), the remaining types in the second round consist of an equal mass of types in

[a, u(b)] and in [v(a), b].) As a result, when c = 0 we cannot resort to continuity to justify

any definition of the second round mean when l = a and m = a. Hence whether or not un-

raveling is an endogenous participation equilibrium outcome when the participation cost is

0 is entirely a matter of definition.11 Further, as suggested in Section 3, when participation

is costless, the notion of endogenous participation equilibria is not compelling.

The unraveling equilibrium of le = a and me = a is the only equilibrium with the

property that all participants in the first round market are accepted with probability 1.

In fact, condition (ii) of Definition 4.2 is satisfied for any l when m = q(l), because this

11 According to our definition (4.5), le = a and me = a is an endogenous participation equilibrium when
c = 0. But the conclusion is reversed if, as in equation (3.1), we compute the second round expected type
by taking the limit as m converges to a while fixing l at a. Whether or not unraveling is an endogenous
participation equilibrium when c = 0 does not affect our conclusion in Proposition 4.4 that it is the only
limit equilibrium as c converges to 0.
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implies l ≥ q(l) > u(b) and so all first round participants match and exit with probability

1, making the second round expected type equal to q(l). However, as we will show formally

in the proof of the next proposition, if l > a then any type just below l would have strict

incentives to participate in the first round market. Thus, m = q(l) cannot be part of any

equilibrium because it does not satisfy condition (i) of Definition 4.2.

Proposition 4.3 establishes unraveling as an equilibrium outcome, but it does not rule

out the possibility that some sorting occurs in other equilibria. Of particular interest

is whether there are equilibria that approach the level of sorting efficiency achieved by

dynamic sorting when the participation cost becomes arbitrarily small. The following

result states that the answer is no. Unraveling is the only limit equilibrium when the

participation cost is arbitrarily small. That is, any equilibrium with small c must be close

to the unraveling outcome with no sorting.

Proposition 4.4. As participation cost c converges to 0, le = a and me = a is the only

limit endogenous participation equilibrium.

Proof. Suppose that there is an equilibrium other than le = a and me = a regardless

of how small c is. Then, there is a sequence of c converging to 0 such that an equilibrium

lc and mc different from the unraveling equilibrium exists for each c. First, we argue that

each equilibrium lc and mc satisfies lc < u(b), or mc > lc + c/b. This property means that

the threshold type lc is accepted with probability strictly less than 1. Suppose instead

mc ≤ lc + c/b. From the monotonicity of u, we have u(x) < y and u(y) < x for all

x, y ∈ [l, b], so that all participating types accept each other and exit with probability 1.

The type distribution in the second round is then given by (4.4), implying mc = q(lc).

Now, if lc > a, then any type x between q(lc) and lc would be accepted with probability

1 in the first round as u(b) = mc − c/b = q(lc) − c/b < x. Such type x would strictly

prefer to join the first round of search since they expect a partner of average type Q(lc),

compared to an average type mc = q(lc) if they wait for the second round. Therefore,

lc = a, and hence mc = q(a) = a, contradicting the assumption that the equilibrium lc

and mc is different from the unraveling equilibrium.

Next, type lc must also be accepted with a strictly positive probability, so we have

c/b < mc− lc < c/lc. Thus, mc− lc converges to 0 as c converges to 0. It then follows that
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u(b) − lc → 0. Further, in any equilibrium we have v(lc) > mc; otherwise type lc would

strictly prefer not to participate since the highest type v(lc) that would accept lc is lower

than the expected type in the second round. This implies that lc is greater than the larger

intersection of u and v if they intersect (because v(x) = x = u(x) < mc at any intersection

x). Hence the second round type distribution G(x; mc, lc) is given by (4.3). Since u(b) −
lc → 0, which is equivalent to v(lc) − b → 0, we have 1 − F (min{v(lc), b}) → 0 and

F (max{u(b), lc})−F (lc) → 0. As u and v are increasing functions, 1−F (min{v(x), b}) → 0

and F (max{u(x), lc})−F (lc) → 0 for every x > lc. Thus G(x; mc, lc) converges pointwise

to the distribution function given by (4.4). Thus, mc− q(lc) → 0, which is consistent with

mc − lc → 0 only if lc → a and mc → a. Q.E.D.

We illustrate Proposition 4.4 with the earlier example of uniform type distribution on

[1, 2]. In this example, besides the unraveling equilibrium with le = 1 and me = 1, which

exists for any cost c < 1, there is a sequence of equilibria converging to the unraveling

equilibrium. In these endogenous participation equilibria, some sorting takes place because

relative to the random matching, high types have a higher probability of matching with

each other as some of the low types do not participate in the first round. For example,

when c = 0.04, we have lc = 1.05 and mc = 1.08, with a corresponding total match

value of V = 2.262, compared to V 0 = 2.25 with no sorting. According to the measure

introduced earlier, the sorting efficiency gain is (V −V 0)/(V∞−V 0) = 14.35%. Note that

in this example, we have mc − c/lc < lc < mc − c/b so that type lc is accepted by some

but not all participants in the first round. See Figure 1 for an illustration. In fact, the

presence of sufficiently many first round participants that are accepted with probability

less than 1 is critical for sorting to occur in an endogenous participation equilibrium. These

agents, who are unacceptable to the highest types, create the search externality needed to

maintain the average quality of the second round pool. Without this search externality, the

second round mean m would be close to the average quality of the non-participants, which

would motivate more types to participate in the first round and reduce the level of sorting.

Moreover, unlike in dynamic sorting of Section 3 where search externality is guaranteed

by the assumption of full participation, it is more delicate to ensure the search externality
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with costly and endogenous participation, because the first round participants must be at

the same time accepted with a strictly positive probability. Indeed, the 14.35% efficiency

gain is the maximum that can be achieved in an endogenous participation equilibrium,

compared to 26.5% achieved in dynamic sorting. When c becomes small, it becomes

increasingly difficult to create the search externality in equilibrium, as the u(x) function

becomes almost horizontal while the v(x) function becomes almost vertical. This means

that for any expected type m in the second round, first round participating types have

almost identical acceptance thresholds, and the set of types that are acceptable to some

but not all agents shrinks to the empty set in the limit when c converges to 0.

In the remainder of this section, we show that our unraveling result is robust to

alternative assumptions of type-dependent participation costs, binding outside options,

asymmetric type distributions, and multiple matching rounds. These robustness checks

further illustrate how endogenous participation destroys the negative search externality

and causes the market to unravel. Readers who are more interested in how our unraveling

result depends on the richness of the type space can continue directly to Section 5.

Type-dependent participation costs. We have so far assumed that the participation

cost c is uniform. Although there is no presumption as to whether and how the cost

should change with type, it is important to check if the unraveling result is robust. To do

so, suppose that the participation cost of type x on either side of the market is given by a

continuous function cθ(x), where c is a positive parameter. As c converges to 0, the whole

cost function becomes arbitrarily small. We claim that if θ(x)/x is a decreasing function

for x ∈ [a, b], then our earlier analysis of unraveling goes through in the same way, and

all results remain valid. To see this, note that because θ(x)/x decreases with x, from

equation (4.1) we have that participation in the first round market by a lower type implies

participation by a higher type. Lemma 4.1 still holds, and any equilibrium is associated

with a threshold l of participation.12 The mutual acceptance region is now defined by the

12 If the match value function is not xy but some other separable function, the condition that is sufficient
to imply Lemma 4.1 will change. For example, if the match value function is wX(x)wY (y), then the
corresponding condition is that θ(x)/wX(x) decreases with x and θ(y)/wY (y) decreases with y. Lemma
4.1 cannot be obtained in the same way if the match value function is not separable.
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following two functions:

u(x) = m− cθ(x)
x

,

v(x) =
cθ(v(x))
m− x

.

Since θ(x)/x decreases with x, both u(x) and v(x) remain increasing. Equilibrium can

then be defined as in Definition 4.2. As c converges to 0, u(x) becomes horizontal and v(x)

becomes vertical in Figure 1, as what happens when θ(x) is constant. This is sufficient to

imply that the only limit equilibrium is l = a and m = a as c converges to 0.

Binding outside options. In making our main unraveling argument, we have assumed

that c < a2, so that in the second round all remaining agents participate. This assumption

is innocuous when agents’ outside option of remaining unmatched is low relative to poten-

tial match values, as we are primarily interested in what happens when the participation

cost is small. To reconsider our unraveling result when the outside option value is relatively

high, assume that a = 0. Then, for any positive participation cost, however small, there

will be agents that never participate. This implies that for any second round expected

participating type m, in the first round the waiting payoff to a type x is max{xm− c, 0},
instead of xm. This does not affect Lemma 4.1, and so the first round participation deci-

sions are still governed by a threshold rule. But now given any participation threshold l,

expected type m, and the resulting second round type distribution G(x; m, l), the second

round participation decisions are also determined by a threshold. An equilibrium pair of

first round participation threshold le and second round mean me can be defined in the

same way as in Definition 4.2, with the second condition replaced by: (ii′) given le, me

and the resulting G(x; me, le), either the second round expected type me uniquely satisfies

me(1−G(c/me; me, le)) =
∫ b

c/me

x dG(x;me, le),

or if no such value exists, implying that no remaining agent participates in the second

round, we have me = 0. Let φ be the unique solution to the equation φQ(φ) = c. In

words, type φ is the threshold type if the market operates for only one round. Note that φ

is an increasing function of c. Corresponding to Proposition 4.3, the unraveling outcome

here is l = φ and m = 0. This follows from arguments analogous to Proposition 4.3; in
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particular, for any m < φ + c/b, the participation threshold that satisfies condition (i) in

Definition 4.2 is φ. Finally, we can show that the counterpart of Proposition 4.4 holds:

l = φ and m = 0 is the only limit equilibrium as c converges to 0. Since φ converges to 0

as c converges 0, we have the same unraveling outcome for the case of a = 0.

Asymmetric type distributions. When the two sides of the market X and Y have

different type distributions, to define an equilibrium, we need two pairs of first round

participation thresholds and second round expected types, one for each side of the market.

Let the four variables be lX , mX , lY and mY . Given mX and mY , the lowest type that

x is willing to accept in the first round is u(x) = mY − c/x, and the highest type that is

willing to accept x is v(x) = c/(mX − x). The roles of u and v are reversed for Y -agents.

The mutual acceptance region is completely described by the two functions u and v. The

two functions are no longer symmetric around the main diagonal in the [aX , bX ]× [aY , bY ]

diagram, but the crucial property is retained that u and v become almost horizontal and

vertical respectively when c becomes arbitrarily small. The assumption of different type

distributions also calls for an extension of our search technology, because in general the

size of participants can differ for the two sides of the first round market. In particular, the

probability of finding a match cannot be 1 for all participants on the long side (the side

with more participants). In any natural extension, agents on the short side of the market

find a match with probability 1. With this restriction, the unraveling result of Proposition

4.4 can be derived in a similar way. We sketch the argument as follows. The critical step

is to show that lcX −mc
X and lcY −mc

Y converge to 0 in any sequence of equilibria indexed

by the participation cost c. Take any subsequence of equilibria (lci

X ,mci

X , lci

Y ,mci

Y ) such that

lci

X −mci

X and lci

Y −mci

Y converge. Clearly, limci→0 lci

X −mci

X ≥ 0 and limci→0 lci

Y −mci

Y ≥ 0;

otherwise, for sufficiently small participation cost, threshold types lci

X and lci

Y would be

incurring the cost in the first round without having any chance of being accepted. Next,

at least for the short side of the first round market, say type x agents, limci→0 lci

X −
mci

X ≤ 0; otherwise, for sufficiently small cost, types just below lci

X would strictly prefer

participating because they would find a match with probability 1 and would be acceptable

to all agents. Thus, limci→0 lci

X −mci

X = 0. Together with the fact that the second round

type distribution converges to the conditional distribution below lX , we have limci→0 lci

X =
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aX and limci→0 mci

X = aX . Since all type x agents participate in the first round market

and since they are on the short side of the market, we also have limci→0 lci

Y = aY and

limci→0 mci

Y = aY .13 Since the above holds for all convergent subsequences of equilibria, the

only possible limit equilibrium is the unraveling outcome, with lX and mX both converging

to aX , and lY and mY converging to aY .

Multiple matching rounds. Consider how our unraveling result is affected when there

are more than two matching rounds. The improvement in sorting efficiency afforded by

multiple matching rounds described in Section 3 does not extend to the case with endoge-

nous participation. A simple induction argument makes this point clear. In round T − 1,

our two-round unraveling result in Proposition 4.4 applies: for c converging to 0, in the only

limit equilibrium all remaining agents participate in round T − 1 and accept anyone they

meet. But then in round T − 2, agents should anticipate that the market will effectively

close in the next round if c is arbitrarily small. So round T − 2 is just like the next-to-last

round. Our two-round unraveling result again applies, and so on. Thus, for any finite T ,

the only limit equilibrium with T matching rounds when the participation cost per round

converges to 0 is that the market operates only for the first round in which all agents

participate and accept whomever they meet. Thus, when agents choose when to search,

adding more matching rounds only serves to hasten the date of search and contracting for

all market participants, with no increase in matching efficiency.

5. Sorting and Unraveling with a Discrete Type Space

So far we have assumed that there is a continuum of types in a finite-horizon matching

model. This modeling choice allows us to produce clean insights about how dynamic

sorting improves matching efficiency and how it depends critically on the search externality.

Implicit in our choice of a continuum of types is the assumption that the type space is

infinitely richer than the potential matching opportunities afforded by a finite number

13 Recall that we have assumed that the two sides of the market have the same size at the outset. If
the two sides have different sizes, then the unraveling result holds for the short side of the market. The
long side will unravel to the point that all acceptable agents participate in the first round market.
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of rounds. Do our conclusions about dynamic sorting and unraveling apply to matching

markets with a finite number of types?

First consider a symmetric, costless participation model with two rounds of matching

and N types, where N ≥ 2 is a positive integer. Let the types be x1 > x2 > . . . > xN .

Each type xi, i = 1, . . . , N , consists of a continuum of agents, and has a fraction f i > 0

in the population. The match value to a type xi agent, if matched with a type xj agent

from the other side, is xixj . As in Section 3, there is a common acceptance threshold in

the first round market: if m is the expected match type in the second round market, each

type accepts a potential match xi if xi ≥ m. Given the first round threshold type xk (the

highest type accepted), the second round type distribution is given by

giR =

{
f i if i > k;

f i
∑

j>k f j if i ≤ k

where R = 1 −
(∑

j≤k f j
)2

is the relative size of the second round market, and gi is

the fraction of xi types agents in the second round market population. The expected

type in the second round is then m =
∑N

i=1 gixi.14 A full participation equilibrium can

be characterized by a threshold type xk such that xk+1 < m ≤ xk. Existence of a full

participation equilibrium can be easily established, and we can extend the analysis to the

case of more than two rounds as in Section 3. In general, multiple equilibria exist, and

some equilibria may involve a probability between 0 and 1 of each type rejecting xk. In

any of these equilibria, the negative search externality that low types impose on high types

allows the market to perform a dynamic sorting function.

Before considering how costly search affects the sorting function of the market, it is

important to note that when the type space is discrete, there are equilibria with sorting that

do not rely on the negative search externality. In these equilibria, types choose to enter the

market sequentially even though participation is costless.15 For example, when there are N

14 As in equation (3.1), we can define the expected type in an “empty” second round market, to be the
limit of the second round expected type as the probability that each type rejects xN converges to 0.

15 In the continuous type case of Section 3, there may exist equilibria where not all types participate
in the first round market. For example, with two matching rounds, one such equilibrium is defined by
a participation threshold l and an acceptance threshold k > l, such that the expected type m in the
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types and T ≥ N matching rounds, it is an equilibrium that for each i = 1, . . . , N , type xi

skips the first i−1 rounds, and in each round j, j ≥ i, type xi participates and accepts type

xj and above. The equilibrium outcome is the perfect sorting for N types. As suggested

in Section 3, these perfect sorting equilibria are difficult to justify when participation

is costless. However, because these equilibria do not rely on the search externality, our

unraveling argument in Section 4 does not apply. In this section, we establish that when

there are at least as many matching rounds as there are types, the perfect sorting can

be approximated arbitrarily closely by sequential participation as the participation cost

converges to zero. This finding contrasts our unraveling result in Section 4: the sorting

function provided by sequential participation does not disappear as the participation cost

becomes small. However, the size of the efficiency gain afforded by sequential participation

crucially depends on the richness of the types space. We will show that, consistent with

our analysis in the continuous type case of Section 4, for any fixed number of rounds, as

the number of types becomes large, no equilibrium can achieve a level of sorting efficiency

that is significantly higher than the unraveling outcome.

We now consider a general symmetric model of N ≥ 2 types and T ≥ 2 rounds

by backward induction. The cost of participation is c; we assume that
√

c < xN . In

round T − 1, let gi
T−1, i = 1, . . . , N , be the type distribution of remaining agents. Unlike

in the continuous type case, participation and acceptance decisions can be probabilistic;

indeed, we will construct mixed-strategy equilibria so that the type distribution gT−1 is

non-degenerate. Let xlT−1 be the lowest type that participates in round T−1 with positive

probability, and let πT−1 > 0 be the participation probability. From an argument identical

to that in Lemma 4.1, we know that types above xlT−1 participate with probability 1.

Next, let xvT−1 be the lowest type that rejects type xlT−1 with positive probability, and let

γT−1 > 0 be the rejection probability. Types above xvT−1 reject type xlT−1 with probability

1. Given lT−1 and πT−1, the probability that any participating type meets type xlT−1 in

second round is exactly k. Unlike the endogenous participation equilibria with sequential sorting that we
construct below, these equilibria rely on the negative search externality and disappear when participation
is costly.
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round T − 1 is

µ
lT−1
T−1 =

g
lT−1
T−1 πT−1

g
lT−1
T−1 πT−1 +

∑
j<lT−1

gj
T−1

,

and the probability of meeting any type xi, i = 1, 2, . . . , lT−1 − 1, is

µi
T−1 =

gi
T−1

g
lT−1
T−1 πT−1 +

∑
j<lT−1

gj
T−1

.

For notational brevity, let α
lT−1
T−1 =

∑lT−1
j=vT−1+1 µj

T−1 +µ
vT−1
T−1 (1− γT−1) be the total accep-

tance probability for the threshold type xlT−1 conditional on participation. Given lT−1,

vT−1, πT−1 and γT−1, round T type distribution is:

gi
T RT =





gi
T−1 if i > lT−1;

g
lT−1
T−1 (1− πT−1α

lT−1
T−1 ) if i = lT−1;

0 if lT−1 > i > vT−1;

g
vT−1
T−1 µ

lT−1
T−1γT−1 if i = vT−1;

gi
T−1µ

lT−1
T−1 if i < vT−1

where gi
T is the fraction of type xi in round T market, and

RT =
∑

j>lT−1

gj
T−1 + g

lT−1
T−1 (1− πT−1α

lT−1
T−1 ) + g

vT−1
T−1 µ

lT−1
T−1γT−1 +

∑

j<vT−1

gj
T−1µ

lT−1
T−1

is the relative size of the round T market. In writing the above expressions, we have

implicitly assumed that type xlT−1−1 and above are accepted with probability 1 by all

participating types. In other words, the threshold type xlT−1 is the only participating type

that faces a positive rejection probability. This must hold when c is sufficiently small. To

see this, note that for type xlT−1 to be acceptable to some types but not to all, we need

xlT−1 to be close to mT , the round T expected type, when c becomes sufficiently small.

Then, we have xlT−1−1 > mT − c/x1 when c small enough, and so all types above xlT−1

are accepted with probability 1. We modify Definition 4.2 to have the following:

Definition 5.1. Given a round T − 1 type distribution gT−1, a continuation equilibrium

in round T − 1 is lT−1, πT−1, vT−1, γT−1 and mT such that (i) type xlT−1 is the lowest

type that weakly prefers to participate in round T −1 market; (ii) type xvT−1 is the lowest

type that weakly prefers to reject type xlT−1 ; and (iii) the round T mean mT is given by

mT =
∑N

j=1 gj
T xj .
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The above definition can be applied recursively to define an endogenous participation

equilibrium. When T = 2, we have an endogenous participation equilibrium by setting

gi
T−1 = f i.16 As in the continuous type case, there is an equilibrium corresponding to

the unraveling outcome: lT−1 = N with πT−1 = 1, and vT−1 = 1 with γT−1 = 0. In

this equilibrium, all types participate and accept each other with probability 1. Unlike the

continuous type case, however, even when c is arbitrarily small, there exist other equilibria.

In particular, consider lT−1 = N and vT−1 = N − 1. If type xN agents are accepted by

type xN−1 with positive probability, then they can be indifferent between participating

and not participating if the cost c is small enough and xN−1 > mT . Type xN−1 can be

indifferent between accepting and rejecting type xN , because a round T mean mT greater

than xN due to the rejection of xN compensates the cost of participating again in the

matching. The intuition of this construction is verified in the lemma below. Moreover, in

this equilibrium, as the participation cost c converges to 0, the participation probability

πT−1 for type xN converges to 0 and the rejection probability γT−1 for type xN−1 converges

to 1. If there are only two types (N = 2), then such equilibrium outcome would be the

perfect sorting in the limit.

Lemma 5.2. Given a round T−1 type distribution gT−1, for c sufficiently small, a continua-

tion equilibrium in round T−1 exists with lT−1 = N , vT−1 = N−1 and πT−1, γT−1 ∈ (0, 1).

Further, as c converges to 0, limc→0 πT−1 = 0, and limc→0 γT−1 = 1.

The proof of the above lemma is in the Appendix. As long as T ≥ N , we can

apply the construction of the continuation equilibria in Lemma 5.2 recursively to obtain

an equilibrium through sequential participation, which converges to the perfect sorting as

c converges to 0.

Proposition 5.3. Suppose that T ≥ N . There exists a sequence of endogenous partici-

pation equilibria such that the equilibrium matching converges to the perfect sorting as c

converges to 0.

16 For T > 2, recursive application of Definition 5.1 requires an implicit assumption that the participa-
tion decisions in each round are governed by a threshold rule. This assumption is satisfied by construction
in equilibria with sequential sorting and bottom sorting that we develop below, and is not required in the
proof of Proposition 5.5.
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Proof. We prove the proposition by construction. Fix any sufficiently small c, and

consider the following form of strategies. The market closes in round N , when all remaining

agents participate and accept each other. In each active round before the market closes,

types participate in sequence: type x1 agents start full participation from round 1 and are

always accepted; for each t = 2, . . . , N , type xt agents skip the first t − 2 rounds, where

they would be rejected with probability 1, participate with a small probability in round

t − 1, where they are rejected with a high probability, and fully participate from round t

onwards and are thereafter always accepted.

When c becomes arbitrarily close to 0, each active round t, t = 1, . . . , N , becomes

an exclusive matching place for xt, and the matching converges to the perfect sorting. It

remains to show that there exist strategies of the form described above that constitute an

endogenous participation equilibrium for any sufficiently small c. We do this by induction.

Without loss of generality, assume T = N , and set lT = N with πT = 1, and vT = 1 with

γT = 0. By Lemma 5.2, we only need to show that (i) for sufficiently small c, there exists

a round t continuation equilibrium with lt = t + 1 and vt = t and πt, γt ∈ (0, 1), where

the expected payoffs in round t + 1 are given by the round t + 1 continuation equilibrium

with lt+1 = t + 2 and vt+1 = t + 1 and πt+1, γt+1 ∈ (0, 1); and (ii) as c converges to 0,

limc→0 πt = 0 and limc→0 γt = 1. To establish this step, we note that when c becomes

sufficiently small, by induction types below xlt play no role in determining the expected

payoffs of type xlt and above. The round t continuation equilibrium can be identified in

the same way as the round T − 1 continuation equilibrium in Lemma 5.2. Q.E.D.

If the number of matching rounds T is smaller than the number of types N , then the

endogenous participation equilibria constructed in the above proof, which we will refer to

as “sequential sorting,” cannot approximate the perfect sorting. Matching inefficiency then

arises. The important question is: how great is the inefficiency when T < N? An upper

bound of the inefficiency can be obtained in the following way. For sufficiently small c, an

equilibrium with “bottom sorting” exists which looks just like sequential sorting, except

that the types that fully participate from round 1 onwards are type xN−T+1 and above,

instead of the single highest type x1 in sequential sorting. When c converges to 0, the
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bottom types (xN−T+2 through xN ) are almost perfectly sorted through sequential partic-

ipation, while all higher types (xN−T+1 through x1) are randomly matched to each other

and exit in the first round. Unlike the full participation equilibria with dynamic sorting

that exist when there is no participation cost, the endogenous participation equilibria with

bottom sorting do not unravel when c becomes arbitrarily small. However, as N becomes

larger for fixed T , bottom sorting becomes more inefficient, because the fraction of types

that are randomly matched in round 1 becomes larger. Although there may exist other

equilibria more efficient than bottom sorting, we show that as N becomes arbitrarily large

and c arbitrarily small for fixed T , there is almost no sorting in any of these equilibria.

As in the proof of Proposition 4.4, a necessary condition for any continuation equilib-

rium in round T − 1 with lT−1 < N is that mT > xlT−1 . Otherwise, type xlT−1 would be

accepted with probability 1 by all participating types and would strictly prefer to partic-

ipate. This implies that mT ≤ xlT−1+1 since all higher types would participate in round

T − 1 and exit. But then type xlT−1+1 would be accepted by higher types with probabil-

ity 1 in round T − 1 and would therefore strictly prefer participation, contradicting the

assumption that type xlT−1 is the participation threshold. The lemma below provides a

necessary condition for mT > xlT−1 . The proof is in the Appendix.

Lemma 5.4. Given a round T − 1 type distribution gT−1, for c sufficiently small, for

any lT−1 < N , a necessary condition for a continuation equilibrium with participation

threshold type xlT−1 is

g
lT−1
T−1∑lT−1

j=1 gj
T−1

>

∑
j>lT−1

gj
T−1(x

lT−1 − xj)
∑

j<lT−1
gj

T−1(xj − xlT−1)
. (5.1)

The left-hand-side of the inequality (5.1) is the largest probability of meeting the

threshold type xlT−1 in round T − 1, computed under the assumption that πT−1 = 1.

This probability represents the greatest possible negative search externality imposed on

the participants in round T − 1, as only the threshold type is rejected with a positive

probability. The inequality thus requires that the search externality imposed by the single

threshold type be sufficiently large, so that enough higher types remain unmatched after

round T −1 to keep mT above xlT−1 . Note that (5.1) is automatically satisfied if lT−1 = N
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(as the right-hand-side is zero): if the threshold type is the lowest type xN then mT is

greater than xN for arbitrarily small search externality. This explains why the continuation

equilibrium with lT−1 = N (bottom sorting) always exists.

The intuition behind Lemma 5.4 is key to understanding the next proposition. For

any fixed T , as N becomes arbitrarily large and c arbitrarily small, the search externality

that can be imposed by any single threshold type becomes negligible. Thus, no equilibrium

sorting can differ significantly from bottom sorting, which in turn becomes closer to the

unraveling outcome in terms of matching inefficiency. For the following proposition, we

consider sequences of type distributions as more types are added. Let fN be the type

distribution with N different types, and denote FN (x) =
∑

i:xi≤x f i
N . We assume that (i)

the support of each fN is contained in [a, b] ⊂ (0,∞); (ii) lim infN→∞ FN (x) > 0 for any

x > a; and (iii) limN→∞ supi f i
N = 0. These assumption ensure that the type distribution

becomes atomless and a is a limit point when N is arbitrarily large.17

Proposition 5.5. For any fixed T , in any endogenous participation equilibrium, the

first round participation threshold converges to a as N becomes arbitrarily large and c

arbitrarily small.

The proof of the proposition is in the Appendix. We use the following discretized

version of our previous example in Sections 3 and 4 to illustrate Proposition 5.5. There

are N types evenly spaced between 1 and 2, with xj = 1 + (N − j)/(N − 1) for each

j = 1, . . . , N , and the type distribution is uniform, with f j = 1/N . Suppose that T = 2 and

c = 0. For each N we compute both the full participation equilibrium with dynamic sorting

that achieves the highest level of efficiency according to the measure introduced in Section

3, and the most efficient endogenous participation equilibrium. The efficiency measure

corresponding to the dynamic sorting outcome varies little as N increases, centering around

27%. For the best-performing endogenous participation equilibria, the efficiency measure

starts at 100% when N = 2 (the perfect sorting), but it drops to below 27% when N = 60,

and approaches zero as N increases further. For example, if N = 101, the threshold type in

17 If a is not a limit point then the following proposition applies to the smallest limit point as N
becomes arbitrarily large.
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dynamic sorting is xk = 1.39, with a total match value of V d = 2.273, implying an efficiency

measure of (V d − V 0)/(V 101 − V 0) = 27.05%, where V 0 = 2.25 for the random matching

and V 101 = 2.335 for the perfect sorting with 101 types. In contrast, for the endogenous

participation equilibrium, the participation threshold type xl is 1.09 (l1 = 91, v1 = 90,

π1 = 0 and γ1 = 1), with a total match value of V b = 2.27, and an efficiency measure

of 24.12%. When the number of types is so numerous that an atomless continuous type

model is a close approximate, the conclusion of Section 4 applies, and almost no sorting

takes place in any endogenous participation equilibrium. With more matching rounds,

efficiency improves notably in dynamic sorting, while the improvement is slower under

endogenous participation. For example, if T = 3 and N = 101, the participation threshold

types in the most efficient dynamic sorting equilibrium are 1.49 in round 1 and 1.33 in

round 2, with an efficiency measure of 41.18%. The gain over two rounds of matching is

obtained through substantially more selective acceptance decisions in the first round. In

contrast, the participation threshold types in the endogenous participation equilibrium are

1.12 and 1.03, with an efficiency measure of 31.36%. Participation thresholds change only

marginally compared to two rounds of matching. There is limited efficiency gain over two

rounds of matching, because sorting occurs only at the bottom of the type distribution.

6. Conclusion

Economists have long recognized that in a matching market both matching decisions and

search decisions involve externalities and can cause market inefficiency. The existing litera-

ture (Diamond 1982; Mortensen 1982; Hosios 1990) has focused on the search externalities

by assuming homogeneity on the two sides of the market. The research on the search ex-

ternalities culminates in the so-called Hosios (1990) condition for search efficiency, which

requires an agent’s bargaining power to equal the elasticity of the matching function. A re-

cent paper by Shimer and Smith (2001) examines the implications of search and matching

externalities in a model with heterogeneous agents. The Hosios condition does not hold

in the model of Shimer and Smith: in the decentralized market attractive types search

too little and match too readily, while unattractive types search too much and match too
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infrequently. In a different setup with posted prices and directed search, Shi (2002) finds

efficiency with heterogeneous agents.

The papers on search and matching inefficiencies mentioned above focus on steady-

state stationary analysis, which greatly reduces the distributional complexity of search

and matching dynamics. Our model is motivated by the concern that the steady state

need not be the relevant model in many entry level markets for professional workers. We

posit that the dynamics in this kind of markets are better captured by a finite-horizon

model with no replacement of the types that have formed matches and left the market.

Two different sorting mechanisms emerge from our analysis of a non-stationary dynamic

matching environment, dynamic sorting and sequential sorting. In the former, agents can

afford to be selective in early rounds of matching, because the negative search externality

imposed by the presence of low types maintains sufficiently high quality in later rounds.

This search externality makes it impossible for types to sort perfectly, but is necessary for

dynamic sorting to function. When a small participation cost is introduced, lower types

are forced to skip initial matching rounds, making them exclusive markets for higher types.

But these exclusive markets tend to unravel, as the highest types in the later markets have

incentives to switch to early markets. In contrast, sequential sorting operates by creating

exclusive markets through sequential participation. Lower types skip initial rounds because

they would be rejected by higher types in early rounds. Each exclusive market must be

homogeneous, for otherwise they would be unraveled. Since sequential sorting does not rely

on search externality, sorting is perfect when there are enough many rounds to create one

exclusive market for each type, and it is robust to the introduction of a small participation

cost. However, when there are not enough many rounds, only the types at the bottom

of the distribution can be sorted. Sorting becomes increasingly inefficient, and eventually

indistinguishable from the unraveling outcome.

The endogenous evolution of trading opportunities poses difficult problems for equi-

librium analysis. Characterizing trading opportunities in matching markets is complicated

because agents are heterogeneous and sorting is important. We are able to make some

progress by ruling out side payments and restricting the search technology and the match

value function. Relaxing these assumptions in a tractable way remains a challenge.
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Appendix

Proof of Proposition 3.4. For any pair of thresholds kX and kY , let

R(kX , kY ) = 1− (1− FX(kX))(1− FY (kY ))

be the size of second round market. Define QX(kX) = E[x | x ≥ kX ] and QY (kY ) =

E[y | y ≥ kY ]. Let mX(kX , kY ) be the mean of X-agents in the second round market,

and define mY (kX , kY ) similarly. An equilibrium is characterized by ke
X and ke

Y such that

kX = mX(kX , kY ) and kY = mY (kX , kY ). Consider the problem of choosing kX and kY

to maximize the total match value V (kX , kY ), given by

(1−R(kX , kY ))QX(kX)QY (kY ) + R(kX , kY )mX(kX , kY )mY (kX , kY ).

For notational convenience, we drop the variable k in the functions. Taking derivatives,

∂V

∂kX
= (1−R)Q′

XQY + RmY
∂mX

∂kX
+ RmX

∂mY

∂kX
+ (mXmY −QXQY )

∂R

∂kX
.

Since (1−R)QX + RmX = mu
X for any kX , where mu

X is the unconditional mean of x,

(1−R)Q′X + R
∂mX

∂kX
+ (mX −QX)

∂R

∂kX
= 0.

Similarly, if mu
Y is the unconditional mean of y, we have (1−R)QY + RmY = mu

Y , and so

R
∂mY

∂kX
+ (mY −QY )

∂R

∂kX
= 0.

We follow similar steps as those in the proof of Proposition 3.3 to show that ∂V/∂kX = 0

if mX = kX . Similarly, ∂V/∂kY = 0 at any equilibrium threshold ke
Y . Q.E.D.

Proof of Proposition 3.6. For the following proof of Propositions 3.6 and 3.7, it is

convenient to write G̃t(x) =
∫ x

a
Gt(z) dz, St(x) = 1 −Gt(x), and S̃t(x) =

∫ b

x
St(z) dz for

any t. Also, for each round t, threshold kt and type distribution Gt, let

m(kt;Gt) = Gt(kt)kt +
∫ b

kt

x dGt(x),
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so that the second equilibrium condition can be written as kt−1 = m(kt; Gt). Whenever

confusion does not arise, we write mt instead of m(kt;Gt).

(i) The existence of equilibrium can be shown with an induction argument. We know

from Proposition 3.2 that for any initial type distribution G an equilibrium exists when

T = 2. Suppose that an equilibrium exists in a model with T ≥ 2 rounds, and let

k1(T ; G) be the largest equilibrium threshold in the first round market with the initial

type distribution G. Then, consider the following algorithm for finding an equilibrium

with T + 1 rounds of the market in total and the initial type distribution F : start with a

first round threshold type k1 ∈ (k1(2; F ), b); set the type distribution G1 in the first round

market to F ; use G1 and k1 to compute the type distribution G2 in round 2 according to

the first equilibrium condition (3.4); use k1 and G2 to determine a round 2 threshold k2

from the second equilibrium condition (3.5). If k2 = k1(T ;G2), then an equilibrium has

been found by combining this particular k1 with the sequence of T thresholds that starts

with the resulting k2, with the resulting G2 as the initial type distribution.

The above process is well-defined, because for each k1 and F , the type distribution G2

in the second round is uniquely defined according to (3.4). Further, (3.5) uniquely defines

a second round threshold k2 for any k1 ≥ k1(2; F ). To see this latter point, rewrite the

condition as follows:

k1 =
∫ b

a

x dG2(x) +
∫ k2

a

(k2 − x) dG2(x).

Using integration by parts and equation (3.4) for G2, that noting that k2 ≤ k1, we can

further rewrite the above as F̃ (k2) = F̃ (k1) − F (k1)S̃(k1). Since k1(2; F ) is the largest

equilibrium threshold in the first round market with T = 2 and the initial type distribution

F , we have F̃ (k1) ≥ F (k1)S̃(k1) for any k1 ≥ k1(2; F ), with equality if and only if k1 =

k1(2; F ). Thus, the first equilibrium condition uniquely defines k2 for any k1 ≥ k1(2; F ).

Now, from Definition 3.1 (or equivalently Definition 3.5) we know that k2 = a when

k1 = k1(2; F ), so k2 < k1(T ;G2) if we start the process with k1 = k1(2; F ). On the other

hand, from (3.5) we have k2 = b when k1 = b, so k2 > k1(T ; G2) if we start with k1 = b.

Continuity of k2 and k1(T ; G2) in k1 then implies that the algorithm yields at least one

k1 ∈ (k1(T ; G2), b) such that k2 = k1(T ; G2), which identifies an equilibrium with T + 1

rounds from the induction assumption.
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(ii) To prove the uniqueness of the equilibrium, consider the following algorithm for finding

an equilibrium with T rounds of the market in total and the initial type distribution F :

start with a first round threshold type k1; use the initial distribution G1 = F to compute

the type distribution G2 in round 2 from the first equilibrium condition (3.4); use k1 and

G2 to determine a round 2 threshold k2 from the second equilibrium condition (3.5); use k2

and G2 to find G3; repeat this process for all t = 3, . . . , T − 1, until we find kT−1 and GT .

(It can be shown by an induction argument that this algorithm is well-defined.) Since the

algorithm defines a sequence of decreasing thresholds, we have gt(x)/Gt(x) = f(x)/F (x)

for all x ≤ kt−1 and for each t = 2, . . . , T − 1, and is therefore a decreasing function due

to log-concavity of F . If kT−1 =
∫ b

a
x dGT (x), we have found an equilibrium.

To show that there is a unique equilibrium, we need to compute the derivatives with

respect to k1. Recognizing that k1 determines both the sequence of thresholds kt and

the sequence of distributions Gt, we use the following iterative method. For each t =

1, . . . , T − 2, using integration by parts, we can rewrite (3.5) as follows:

G̃t(kt+1) = G̃t(kt)−Gt(kt)S̃t(kt).

Since the algorithm determines a decreasing sequence of thresholds, the above becomes:

F̃ (kt+1) = F̃ (kt)− F (kt)S̃t(kt). (A.1)

For t = 1, taking derivatives implies that

dk2

dk1
=

F (k1)(1 + S(k1))− f(k1)S̃(k1)
F (k2)

.

Note that dk2/dk1 > 1 if F (k2) < F (k1)−f(k1)S̃(k1). For t = 2, . . . , T −1, we use another

way of rewriting the second equilibrium condition for round t − 1, again with integration

by parts, to get

kt−1 = kt + S̃t(kt). (A.2)

Combining (A.1) and (A.2), we have for t = 2, . . . , T − 1

F̃ (kt+1) = F̃ (kt)− F (kt)(kt−1 − kt).
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The above equation can be used to compute each dkt/dk1 recursively, starting from

dk2/dk1. Taking derivatives, we have for t = 2, . . . , T − 1

F (kt+1)
dkt+1

dk1
= (2F (kt)− f(kt)S̃t(kt))

dkt

dk1
− F (kt)

dkt−1

dk1
.

An equilibrium is defined by kT−1 =
∫ b

a
x dGT (x), or equivalently,

kT−2 = kT−1 +
F̃ (kT−1)
F (kT−1)

.

The above can be viewed as an equation in k1. Since F is log-concave, F̃ /F is increasing,

and it follows that a unique fixed-point in k1 exists if dkT−1/dk1 > dkT−2/dk1. Thus,

Gt(kt+1) < Gt(kt)−gt(kt)S̃t(kt) if for any each t = 1, . . . , T−2, then we obtain dkt+1/dk1 >

dkt/dk1 recursively, starting from dk2/dk1 > 1, and therefore the equilibrium is unique.

It remains to argue that for any distribution G, any thresholds k > k′, such that

k > k1(2; G), k′ is determined by G̃(k′) = G̃(k) − G(k)S̃(k) and g(x)/G(x) is decreasing

for any x < k, we have

G(k′) < G(k)− g(k)S̃(k). (A.3)

This condition is sufficient, because even though changes in k1 affect all distributions Gt,

the stated condition applies to all G, k and k′ that are linked through the equilibrium

conditions and is therefore stronger than Gt(kt+1) < Gt(kt) − gt(kt)S̃t(kt) for any each

t = 1, . . . , T − 1. To see why (A.3) is true, note that since g(x)/G(x) is decreasing in x,

we have g(x) > G(x) g(k)
G(k) for any x < k. Integrating from k′ to k (note that k′ < k by

assumption) gives

G(k)−G(k′) > (G̃(k)− G̃(k′))
g(k)
G(k)

.

Since G̃(k′) = G̃(k)−G(k)S̃(k), we have (A.3), as desired. Q.E.D.

Proof of Proposition 3.7. The efficiency of an equilibrium can be established with

an induction argument. Fix a market with a total of T rounds and the initial distribution

F . For any sequence of decreasing thresholds k1, . . . , kT−1, let Gt, t = 2, . . . , T , be defined
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according to equation (3.4), starting from G1 = F . Let VT be the expected total match

value for round T , with type distribution GT :

VT =

(∫ b

a

x dGT (x)

)2

.

For each t = 1, . . . , T − 1, recursively define the expected match value from t onward:

Vt =

(∫ b

kt

x dGt(x)

)2

+ Rt+1(kt)Vt+1,

which, by integration by parts, can be more conveniently written as

Vt =
(
ktSt(kt) + S̃t(kt)

)2

+ Rt+1(kt)Vt+1.

The objective is then to maximize V1.

We restrict attention to decreasing sequence of thresholds. Our induction argument

starts with the observation from Proposition 3.3 that for the two-round case, any optimal

threshold satisfies equation (3.5). Now, assume that this holds for any T−1 rounds, so that

for each t = 2, . . . , T −1, any sequence of decreasing thresholds that maximizes Vt satisfies

the equilibrium condition that kt−1 = mt. Then, for a sequence of thresholds k1, . . . , kT−1

to maximize V1, it is necessary that kt−1 = mt for all t ≥ 3, and that ∂V1/∂k1, evaluated

at k1, . . . , kT−1, is equal to 0. We will show that these necessary conditions imply that

k1 = m2, which establishes the proposition by induction.

To show k1 = m2, we recursively derive the expressions of V1 and ∂V1/∂k1, both

evaluated at the optimal sequence of thresholds k1, . . . , kT−1. To start, from the induction

assumption that kT−1 = mT , we have VT = k2
T−1. To compute ∂VT /∂k1, we rewrite

VT =

(
kT−1 +

GT−1(kT−1)S̃T−1(kT−1)− G̃T−1(kT−1)
RT (kT−1)

)2

.

Taking derivatives with respect to k1, and evaluating at kT−1 = mT , which, by integration

by parts is equivalent to GT−1(kT−1)S̃T−1(kT−1) = G̃T−1(kT−1), we find that ∂VT /∂k1 is

given by

2kT−1

RT (kT−1)

(
GT−1(kT−1)

∂S̃T−1(kT−1)
∂k1

+ S̃T−1(kT−1)
∂GT−1(kT−1)

∂k1
− ∂G̃T−1(kT−1)

∂k1

)
.
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Since kT−1 < k1, we have

S̃T−1(kT−1)
∂GT−1(kT−1)

∂k1
=

∂G̃T−1(kT−1)
∂k1

,

and therefore
∂VT

∂k1
= 2kT−1

GT−1(kT−1)
RT (kT−1)

∂S̃T−1(kT−1)
∂k1

.

Now, we can proceed to round T − 1, and so on. In recursively computing ∂Vt/∂k1, we

treat the thresholds k2, . . . , kT−1 as independent variables, and recognize that the choice

of k1 affects only the sequence of distributions G2, . . . , GT . We have

V2 = m2
2 −

T−1∑
t=2

2ktS̃t(kt)G2(kt),

and its derivative
∂V2

∂k1
= 2m2

∂S̃2(k2)
∂k1

+
T−1∑
t=2

2ktS̃t(kt)
∂S2(kt)

∂k1
.

Since for each t = 2, . . . , T − 1,

∂S2(kt)
∂k1

= f(k1)S(k1)
G2(kt)
R2(k1)

,

and since m2 = k2 + S̃2(k2), we have

∂V1

∂k1
= −2f(k1)(k1S(k1) + S̃(k1))k1 + 2f(k1)S(k1)m2

2 + 2R2(k1)m2
∂m2

∂k1
.

Using the definition of m2 and integration by parts, we can rewrite m2 as

m2 = k1 +
1

R2(k1)
(F (k1)S̃(k1)− F̃ (k1) + F̃ (k2)).

The derivative of m2 with respect to k1 is

∂m2

∂k1
=

f(k1)
R2(k1)

(S̃(k1)F 2(k1) + 2S(k1)(F̃ (k1)− F̃ (k2))).

Substituting m2 and ∂m2/∂k1, we have

∂V1

∂k1
=

2f(k1)
R2(k1)

(F (k1)S̃(k1) + S(k1)(F̃ (k1)− F̃ (k2)))(m2 − k1).
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Thus, the optimal first round threshold k1 satisfies k1 = m2, completing the induction

argument. Q.E.D.

Proof of Lemma 5.2. For notational convenience, we drop the subscript T − 1 from

lT−1, vT−1, πT−1, γT−1 and µT−1. With l = N , v = N −1, and π, γ ∈ (0, 1), the condition

for type xN−1 to be indifferent between accepting and rejecting type xN is:

xN−1xN = xN−1mT − c. (A.4)

For any γ ∈ (0, 1), equation (A.4) determines at least one π ∈ (0, 1). To see this, note that

mT = xN if π = 0 (because only types xN−1 and above participate in round T−1 and they

accept each other and exit) so that the left-hand-side of equation (A.4) is strictly larger

than the right-hand-side. On the other hand, mT > xN if π = 1 (because types xN−1 and

above have a positive probability of meeting and rejecting type xN in round T −1), so that

the left-hand-side is strictly smaller than the right-hand-side when c is sufficiently small.

Furthermore, equation (A.4) implies mT converges to xN as c converges to 0. Hence any

π that satisfies the equation becomes arbitrarily small.

Next, consider the condition for type xN to be indifferent between participating in

round T − 1 and waiting for round T :

−c + µN (xN )2 + µN−1(1− γ)xNxN−1 = (µN + µN−1(1− γ))(xNmT − c). (A.5)

For any π, if γ = 1, then type xN strictly prefers waiting for round T , as the left-hand-side

of the above equation is strictly less than the right-hand-side. For c and π sufficiently small,

if γ = 0, the left-hand-side of equation (A.5) is strictly greater than the right-hand-side.

To see this, note that µN converges to 0 as π becomes close to 0, and so mT converges

to xN for any γ. It follows that for sufficiently small c, at γ = 0, type xN strictly prefers

participating in round T − 1.

By continuity of the solutions to equations (A.4) and (A.5), there is a pair π, γ ∈ (0, 1)

that satisfies the two equations for sufficiently small c. Further, we know from equation

(A.4) that mT converges to xN and π converges to 0 as c becomes close to 0, so from

equation (A.5) we obtain that limc→0 γ = 1. Q.E.D.
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Proof of Lemma 5.4. For notational convenience, we drop the subscript T − 1 from

lT−1, vT−1, πT−1, γT−1, µT−1 and gT−1. For any j = 1, . . . , N , let qj = ET−1[x | x ≤ xj ]

and Qj = ET−1[x | x ≥ xj ]. Given l, π, v and γ, we can write mT as:

mT = ωql−1 + ωlx
l + ωvxv + ωQv+1,

where the weights are given by RT ω =
∑

j>l g
j , RT ωv = gvµlγ, RT ω = µl

∑
j<v gj , and

RT ωl = (1− π)gl + πgl
(
γµv +

∑
j<v µj

)
. We can rewrite mT > l as

RT ωv(xv − xl) + RT ω(Qv−1 − xl) > RT ω(xl − ql+1).

The left-hand-side of the above inequality is increasing in γ. It is also increasing in π

because µl increases with π. Finally, we can verify that when v increases by 1, the left-

hand-side changes by µlgv(xv−xl)(1−γ)+µlgv+1(xv+1−xl)γ, which is positive so long as

v < l− 1. Thus, the left-hand-side increases with v. Since the right-hand-side is constant,

a necessary condition for mT > xl for some π, γ and v is that mT evaluated at π = 1,

γ = 1 and v = l−1 is strictly greater than xl. Substitution and manipulation of the terms

in mT give the inequality stated in the lemma. Q.E.D.

Proof of Proposition 5.5. We first prove the proposition for T = 2. For each N , set

gT−1 to fN in Lemma 5.4. We claim that for any threshold type x > a, the inequality

(5.1) cannot be satisfied for sufficiently large N , implying that x cannot be an equilibrium

participation threshold for any c sufficiently small. To see this, note that when x > a

the left-hand-side of the inequality in Lemma 5.4 converges to 0 as N becomes arbitrarily

large. The numerator of the right-hand-side becomes arbitrarily close to the difference

between x and the conditional mean below x, qN (x). We can bound qN (x) by

qN (x) ≤ FN (x′)
FN (x)

x′ +
(

1− FN (x′)
FN (x)

)
x

for any x′ ∈ (a, x). By assumption, FN (x′)/FN (x) is bounded away from 0 as N becomes

large, hence qN (x) is strictly smaller than x.

Next, suppose that the proposition is true for some T = T ′. Then, for T = T ′ + 1,

when N is sufficiently large and c is sufficiently small, in round 1 each type x faces a
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continuation payoff that is arbitrarily close to xm2 − c, where m2 the mean type among

all agents remaining in round 2. Hence, Lemma 5.4 applies and the inequality (5.1) is

necessary for any type xl to be an equilibrium participation threshold. We have already

shown that (5.1) cannot be satisfied for any xl > a when N is arbitrarily large. The

proposition then follows from induction. Q.E.D.
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