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Summary. This paper examines implications of complexity cost in implementing repeated

game strategies through networks with �nitely many classi�ers. A network consists of

individual classi�ers that summarize history of repeated play according to a weighted sum

of empirical frequency of the outcomes of the stage game, and a decision unit that chooses

an action in each period based on the summaries of the classi�ers. Each player maximizes

his long run average payo�, while minimizing the complexity cost of implementing his

strategy through a network, measured by its number of classi�ers. We examine locally

stable equilibria where the selected networks are robust against small perturbations. In

any locally stable equilibrium, no player uses a network with more than a single classi�er.

Moreover, the set of locally stable equilibrium payo� vectors lies on two line segments in

the payo� space of the stage game.
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1. Introduction

The potential complexity of equilibrium strategies in dynamic economic models raises

suspicion about the assumption of rationality of economic agents. In response, models of

bounded rationality are proposed to recover the conclusions of equilibrium models through

\simple" strategic plans. For example, in �ctitious play (e.g., Fudenberg and Kreps [1993]),

each player computes the empirical distribution of actions by his opponent, and chooses a

myopically optimal action based on this summary statistic. In 2� 2 games, �ctitious play

dictates an action according to a single threshold rule and emulates a Nash equilibrium

outcome in the long run regardless of the initial conditions. One can �nd a similar spirit

in Bray [1983] in the context of rational expectations equilibrium. Each agent forms a

forecast of market price according to the average price in the past and chooses his optimal

action based on the forecast. Under certain conditions, the agent's forecast converges to

the actual price distribution in the long run, even though the agent does not have perfect

foresight.

A common thread between �ctitious play and adaptive expectations is that a player's

action in each period depends upon a simple summary statistic of past history. Thus, to

implement this kind of strategy, we need not assume excessively sophisticated information

processing capabilities as we often do in equilibrium analysis. The main exercise in these

works is to demonstrate that the \simple" rule leads to an equilibrium in the long run,

and to verify the stability of the limit outcomes. The convergence result is important in

showing the robustness of equilibrium analysis against bounded rationality of agents, and

also useful in selecting interesting equilibria.

This paper views bounded rationality as a consequence of the \complexity cost" in

implementing a repeated game strategy rather than an exogenous constraint in processing

information. Complex strategies require economic agents to respond to new information

in a more sophisticated way, and are therefore more costly to implement. The kind of

complexity cost we have in mind is best understood as computational cost, since a more

complex decision procedure requires more computation in processing information. Imag-

ine agents engaged in long term competition who are concerned with the cost of imple-

menting complex strategies as well as their long term payo�s. Under this interpretation,
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the complexity of an equilibrium strategy is determined endogenously in balancing the

trade-o� between higher payo�s and lower complexity cost, for achieving higher payo�

generally necessitates a more complex strategy. We choose in�nitely repeated games as

the environment to study the trade-o�, because the results of in�nitely repeated games are

well-established for comparison. The objective of this paper is to understand the long run

implications of the complexity cost on equilibrium strategies and equilibrium outcomes in

in�nitely repeated games.

The cost approach to bounded rationality is pioneered by Rubinstein [1986]. Rubin-

stein models a repeated game strategy by a �nite automaton, and measures the complexity

of the automaton by counting the number of its states. His result imposes restrictions on

the set of equilibrium outcomes in the repeated prisoner's dilemma game. Since an au-

tomaton with in�nitely many states is needed to compute an average from a history in an

in�nitely repeated game, �nite automata do not capture the simplicity of �ctitious play

and adaptive expectation. In this paper we use networks with �nitely many classi�ers

to represent repeated game strategies.1 Roughly speaking, we take �ctitious play as the

basic unit of information processing, called classi�er, and connect multiple classi�ers into

a network. Each classi�er discriminates histories according to a weighted average of the

empirical distribution of the stage game outcomes, and the network chooses an action in

each period based on the summaries of its classi�ers. Since networks with more classi-

�ers can discriminate histories of the repeated game play in a �ner way, we measure the

complexity cost of a network by the number of its classi�ers.

One might think that we admit more general computing machines than �nite automata

because a strategy represented by a network can be implemented only by an automaton

with in�nitely many states. This is misleading. A �nite automaton admits an arbitrary

transition rule between the states, but a network imposes a rigid, yet intuitive, transition

rule in that the empirical frequency of outcomes must be updated each period according

to simple averaging.2 Due to this di�erence in transition rules, networks cannot be said to

1
Such networks are a version of neural networks used in arti�cial intelligence as model of human brain.

For reference, see Weisbuch [1990].

2 The general automaton is often criticized on the ground that the transition rule of the state often
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be more general than �nite automata. As a result, the analysis of Rubinstein [1986] and

Abreu and Rubinstein [1988] does not apply to network strategies. We believe that the

simplicity of the transition rule in a network strategy makes networks with �nitely many

classi�ers an attractive alternative to �nite automata as a model of bounded rationality.

We posit the following question: how complex are equilibrium networks in the long run

when complexity cost is small but positive? To emphasize the impact of complexity cost, we

model the trade-o� between repeated game payo� and complexity cost by a lexicographical

preference. The primary objective of each player is to maximize his repeated game payo�.

Only when two networks achieve the same long run payo�, the player opts for the simpler

one.

We imagine a decision maker who has to delegate his strategic plan to a network of

information processors, but is also concerned about the possibility of small perturbations

that can push the play o� the equilibrium path. Due to the limited computational capa-

bility, the decision maker cannot describe the perturbations precisely. In this situation,

it would be natural to require the long run outcome of the network to be robust against

small mistakes. That is, even after someone makes a mistake, the network should be

\stable" enough to recover what it is supposed to achieve in the long run. We call this

requirement local stability. Local stability requires �rst that the equilibrium networks be

time-consistent, so that along the equilibrium path, no player has incentives to change his

network to achieve a higher payo� or the same payo� with a network with fewer classi�ers.

Furthermore, local stability requires that no such incentives exist in a small neighbor-

hood of the equilibrium path. Without the requirement, it would be di�cult for a player

with bounded computational capability to evaluate the long run performance of a network

exposed to small \unexpected" shocks.

Since we are primarily interested in networks that survive long run competition, we

will focus on equilibrium networks that induce well-de�ned long run average frequency

of outcomes. Except for an outcome path where players choose a pure strategy Nash

lacks intuition and structure. As demonstrated by Banks and Sundaram [1990], virtually all equilibria
constructed by Rubinstein [1986] and by Abreu and Rubinstein [1988] collapse once players give minimal
consideration to the complexity cost of the transition rule.
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equilibrium of the component game in each period, each player has to alternate between

di�erent actions according to the equilibrium path. To identify the time to switch to

another action, the player has to process the information contained in the history of plays.

Given that such computation is costly, each player is eager to adopt a simpler network as

long as he can achieve the same long run payo�. In a locally stable equilibrium, no player

can have such incentives in a small neighborhood of the equilibrium path.

We demonstrate that complexity of equilibrium network unravels under the unilateral

incentives to reduce complexity cost. In any locally stable equilibrium of an in�nitely

repeated 2 � 2 game, no player uses a network with more than a single classi�er. Thus,

there is a tight upper bound on the complexity of equilibrium strategy, even though players

give only secondary consideration to the complexity cost. This result stands in sharp

contrast to Rubinstein [1986] and Abreu and Rubinstein [1988] where the number of states

of equilibrium automata is not bounded.

The set of locally stable equilibrium payo� vectors lies on two line segments in the

payo� space of the stage game. In the prisoner's dilemma game, for example, an individu-

ally rational payo� vector can be sustained by a locally stable equilibrium if and only if it

is located on the two diagonals in the feasible payo� space of the stage game. This paper

achieves a signi�cant extension of Rubinstein [1986] to a class of computing machines with

in�nitely many states and a simple transition rule. Despite the fact that our solution con-

cept is a re�nement of semi-perfect equilibrium (which requires only time-consistency), we

end up with a larger set of equilibrium payo�s than Rubinstein [1986], while maintaining

a uniform upper bound on the complexity of equilibrium strategies.

The paper is organized as follows. Section 2 formally describes the 2� 2 stage game,

the network, the preference, and the solution concept. Section 3 states the main result of

this paper. The result is established in two major steps. First, we show that in any locally

stable equilibrium no player uses a network with more than a single classi�er. Second, we

present necessary and su�cient conditions for a payo� vector to be sustained as a locally

stable equilibrium payo� vector by a pair of networks with at most a single classi�er.

Section 3 presents the second step only, since the main intuitions behind our result can be

found in the second step. The proof of the �rst step is relegated to the appendix. Section

4 concludes.
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2. Formal Description

Consider a 2 � 2 game. Let S1 = S2 = fC;Dg be the set of actions of each player, and

S = S1 �S2 be the set of outcomes. Let ui(s) be player i's payo� from an outcome s 2 S.

De�ne for each i 6= j 2 f1; 2g,

vi = min
sj

max
si

ui(si; sj)

as the (pure) security payo� of player i. Between the two actions of player j, we identify

D as the minmax strategy of the stage game:

vi = max
si

ui(si;D):

A payo� vector v = (v1; v2) is individually rational if vi � vi for each i, and strictly

individually rational if vi > vi for each i.

We assume that the set of strictly individually rational payo� vectors is non-empty.

This assumption excludes some games like matching-penny game

2
4

C D

C 1;�1 �1; 1

D �1; 1 1;�1

3
5;

but still admits a wide range of 2� 2 games, including the prisoner's dilemma

2
4

C D

C 3; 3 0; 4

D 4; 0 1; 1

3
5; (2:1)

and the battle of sexes

2
4

C D

C 0; 0 1; 4

D 4; 1 0; 0

3
5:

Let G = hS; u1; u2i be a 2� 2 game that has a non-empty set of strictly individually

rational payo� vectors. Consider the in�nitely repeated game of G. A history at the
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beginning of period T + 1 (T � 0) is hT = (s1; : : : ; sT ) where st 2 S for each t � T . A

repeated game strategy of player i is a mapping from a history to an action si 2 Si.

We now formally describe a neural network, or simply a network, which implements

a repeated game strategy for player i. The network consists of one decision unit and

Ki classi�ers. At the beginning of the game, the decision unit selects an action s1i . Let

hT = (s1; : : : ; sT ) be a history at the beginning of period T + 1 (T � 1). De�ne

f (s : hT ) =
1

T
#ft � T : st = sg

as the empirical frequency of s in hT . The k-th classi�er (k = 1; : : : ;Ki), represented by

a vector �ki 2 IR4, summaries the history into

X
s2S

�ki (s)f (s : h
T )

and reports to the decision unit bk = 1 if the summary statistic is positive and bk = 0 if

otherwise. Based on the binary vector bi = (b1; : : : ; bKi) of the reports from Ki classi�ers,

the decision unit chooses an action sT+1i 2 Si according to a decision function

Bi : f0; 1g
Ki ! fC;Dg:

We can represent player i's network by

h�1i ; : : : ; �
Ki

i ;Bi; s
1

i i:

Let �Ki

i be the collection of networks with Ki classi�ers. Let �i = [Ki�0�
Ki

i be the

collection of all networks with �nitely many classi�ers.

What we have just described is known as a perceptron with Ki linear classi�ers, which

has been used to model how our brain processes information to identify objects (Weisbuch

[1990]). This network does not adjust the parameters �1i ; : : : ; �
Ki

i in response to outcomes

of information processing. In this sense, it does not \learn" to play. Rather, it is designed

to implement a strategy by taking the empirical frequency of outcomes in each period and
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processing this information to take an action.3 4

The network has a natural interpretation as a hierarchical information-processing

organization consisting of a tier of accountants and a decision maker.5 The input to the

organization is a summary of the history of the repeated game play. After processing the

input information, the organization outputs a decision C or D. Each classi�er can be

thought of as an accountant, whose job is to collect the input information (determine the

empirical frequency of the outcomes from the history) and to process it by summarizing it

into a binary variable according to a weighted average rule with pre-speci�ed weights. The

decision unit can be viewed as a decision maker, whose job is to process the binary vector of

reports from accounts and transform it into a decision C or D. With this interpretation of

networks as hierarchical organizations, the paper can be viewed as an exercise to determine

the size and scope of organizations that survive in the long run competition.

Let f(hT ) 2 �4 be the vector of empirical frequency of outcomes in history hT , where

�4 is the unit simplex in IR4. For each k = 1; : : : ;Ki, let

Hk
i =

(
f 2 �4 :

X
s2S

�ki (s)f (s) = 0

)

be the hyperplane in �4 determined by �ki . Then the k-th classi�er can be thought of

as computing the empirical frequency f (hT ) following hT and reporting whether f (hT )

is \above" or \below" Hk
i . Let Hi and Hi be the upper and lower open half spaces

determined by Hi. We often identify the k-th classi�er with the hyperplane Hk
i . The

hyperplanes H1
i ; : : : ;H

Ki

i divide �4 into at most 2Ki \cells". The decision unit assigns an

action sT+1i 2 Si to each cell according to the decision function Bi.

3 A repeated game played by a neural network with learning capability is extensively studied in Cho
[1996b].

4 Hornik, Stinchcombe and White [1989] show that one can approximate any measurable function by
a sequence of single layered neural networks. Thus, in a static game, a decision maker who can use any
network with �nitely many classi�ers can approximate virtually all strategies. This result clearly holds for
�ntely repeated games. Extending their result to in�nitely repeated games would be a worthwhile exercise
for future research.

5 There has been recent growth in the literature of organizational design where organizations are
modeled as information processing networks. See, e.g., Radner [1993]. Van Zandt [1996] surveys the most
recent works in this literature.
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Given a pair ' = ('1; '2) 2 �1 � �2, let f�
t(')gTt=1 be the sequence of outcomes

induced by ' up to period T . For each i, de�ne

vi(') = lim inf
T!1

1

T

TX
t=1

ui(�
t('))

as player i's long run average payo� from the repeated game. Let c('i) be the \complexity

cost" of the network 'i. For simplicity, we assume that c('i) is equal to the number of

classi�ers Ki in 'i.

The number of classi�ers naturally represents the sophistication of the network, or the

complexity of the repeated game strategy implemented by the network. A network with

no classi�er can only implement the strategies that play C or D following every history,

while a network with many classi�ers is more complex because it can divide the frequency

simplex �4 into many cells and discriminate the history of repeated game play in a �ner

way.

The complexity cost can be regarded as the cost of maintaining the classi�ers in the

network. This interpretation parallels the number-of-states measure for �nite automata

used by Rubinstein [1986] and Abreu and Rubinstein [1988]. The idea is that in each

period the player has to pay a fee for each classi�er used in his network. Because each

classi�er is involved in choosing the action in each period, it is necessary to maintain all

classi�ers, and therefore, the maintenance cost of a network can be measured according

to the number of classi�ers. An alternative interpretation of the complexity cost in our

model is the computational cost related to processing the reports from the classi�ers.

This interpretation is not valid in the �nite automaton model: since in each period only

one state is involved in the computation before an action is chosen, a �nite automaton

with more states does not have a greater computational cost than one with fewer states.

In contrast, due to the parallel computation nature of our networks, in each period all

classi�ers are involved in computation before an action is chosen. Therefore, in our network

model, the maintenance cost interpretation and the computational cost interpretation of

the complexity cost are equally valid. If we view the network as a hierarchical organization

with Ki as the number of accountants, then the complexity cost of the network represents
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the sum of wages paid to the accountants.6

The di�erence between the number-of-states measure of complexity cost in the �nite

automata literature and our number-of-classi�er measure needs to be stressed. Both the

�nite automaton and our network are attempts to model procedural aspects of decision-

making in competitive situations. A �nite automaton takes a \sequential" approach by

emphasizing the dynamics of transition of the states. By contrast, a network is \parallel"

in the sense that it emphasizes the classi�cation of \the state space" (the space of the

outcome frequency) and recognition of the state (the frequency of realized outcomes in the

history) in the state space in each period. We can imagine that the outcome frequency

space is divided into cells by the classi�ers and associated with an action by the decision

unit. The di�erence between the number-of-states measure and our number-of-classi�er

measure reects the di�erence in the two approaches. A priori, one cannot say which

approach is more appropriate in modeling the procedural aspects of decision-making.

To illustrate the di�erent measures of complexity cost used in �nite automaton model

and our network model, consider the following example. Suppose that two decision makers

play the in�nitely repeated prisoner's dilemma game, whose component game is (2.1).

Consider the following outcome path

(C;C); (C;C); (D;D); (D;D); (C;C); (C;C); (D;D); (D;D); : : : (2:2)

where the two players synchronize their actions in a two-period cycle. In order to sustain

(2.2), it is necessary for the machine to know in which phase of the cycle the game is. This

can be achieved by a �nite automaton by assigning di�erent states for each C, for example,

so that the machine knows whether the game is at the beginning or at the end phase of

C cycle. Indeed, following Abreu and Rubinstein [1988], one can show that the outcome

path can be induced by a pair of 4-state automata. In contrast, a pair of networks with a

single linear classi�er cannot distinguish the same outcome within one phase, and therefore

cannot induce the outcome path (2.2). However, the long run frequency of outcomes in

6 This measure ignores the computational complexity of summarizing information provided by multiple
accountants. For a discussion of the implications of this complexity to organizational design, see Li [1995].
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(2.2) is the same as the following outcome path:

(C;C); (D;D); (C;C); (D;D); : : :

which can be induced by a pair of networks with a single linear classi�er. For example, for

each i = 1; 2 and 8si 2 fC;Dg, we can choose

�i(C; si) = 1; �i(D; si) = �1;

with the initial action s1i = C and the decision rule

Bi(z) =

�
D if z =

P
s2S �i(s)f(s : h

T ) > 0

C otherwise.

We assume that each player i has the lexicographic ordering �i between vi(') and

c('i): given any two pairs of networks ' = ('1; '2) and '0 = ('0
1
; '0

2
), 'i �i '0i if

vi(') < vi('
0) or vi(') = vi('

0) and c('i) > c('0i). Under the lexicographical ordering,

each player's �rst objective is to maximize his average payo� from the repeated game

using a network with �nitely many classi�ers. Throughout the paper, we assume that

the complexity cost of the network is given a secondary consideration. This assumption is

made to emphasize the impact of any slight consideration of complexity cost on equilibrium

strategies in repeated games. But our conclusions hold even if players' preferences exhibit

non-trivial trade-o�s between the long run average payo� and the complexity cost, as long

as the consideration of complexity cost is su�ciently insigni�cant compared to the long

run average payo�.

A network game is a normal form game

Gn = h�1

1
;�1

2
;�1;�2i;

where each player delegates his repeated game strategy to a network at the beginning of the

game. To be a solution of this game, the pair of networks must form a Nash equilibrium.

Definition 2.1. A pair of networks ('�
1
; '�

2
) 2 �1

1
� �2

2
is a Nash equilibrium of Gn if

8i 6= j = 1; 2, 8'i 2 �i, '
�

i 6�i 'i.
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We imagine a decision maker who delegates his repeated game strategy to a network

of classi�ers. If the network never makes mistakes in carrying out the instructions, Nash

equilibrium would be an appropriate solution concept. If small mistakes are possible

but the decision maker knows the precise probability distribution of the mistakes, he

can calculate the optimal network at the beginning of the game. In such a case, Nash

equilibrium is again appropriate.

However, when small mistakes by the network are possible and when the decision

maker has bounded computational capability, it would be extremely di�cult to calculate

the probability distribution of all future mistakes of a network, which may depend on states

of the networks in each period. Instead of a decision maker with unlimited computational

capability, we assume that he is aware of the existence of small mistakes, but cannot

calculate the entire probability distribution of the mistakes. Also, the decision maker is

aware that once he delegates the repeated game strategy to a network, he will have no

further opportunity to modify it once the repeated game starts. In such an environment,

it is natural to consider a locally stable equilibrium: if a decision maker cannot identify

the small mistakes, then he should choose a network that remains optimal even after

\unexpected" shocks push the future play into a small neighborhood of the equilibrium

path.

To illuminate the importance of the local stability, consider a pair of \grim trigger"

strategy:

s1i = C; �i(C;C) = 0 and �i(s) = 1 8s 6= (C;C): (2:3)

Each player chooses D in period T following history hT if and only if the summary statisticP
s �i(s)f(s : h

T ) > 0. Note that as long as both players choose C, the summary statistic

of each network remains 0, and each player continues to play C. However, as soon as a

player deviates from C, the statistic becomes positive and remains positive for the rest of

the game so that each player choosesD forever. Thus, it takes only a single mistake to push

the long run outcome to (D;D). Given that the decision maker has bounded computational

capability and therefore cannot identify future shocks when he delegates the game to a

network, such extreme sensitivity to perturbations would make it very di�cult for him to

evaluate the long run outcome.
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Since we are primarily interested in networks that survive long run competition, we

will focus on equilibrium networks that induce well-de�ned long run average frequency.

Under this assumption, the notion of \local stability" can be easily formalized.7 For each

s 2 S, we require the existence of

f'(s) = lim
T!1

f (s : f�(')gTt=1):

For any � > 0 and f 2 �4, let

N�(f ) =

(
f 0 2 �4 :

X
s2S

jf(s)� f 0(s)j < �

)

be the � neighborhood of f .

Definition 2.2. A Nash equilibrium '� = ('�
1
; '�

2
) of Gn is a locally stable equilibrium of

Gn if 9� > 0 such that 8� 2 (0; �), 8T � 1 and 8hT such that f (hT ) 2 N�(f'�), 8i = 1; 2,

and for all 'i 2 �1

i , player i cannot receive more than vi('
�) by switching to 'i in period

T , and receives strictly less than vi('
�) by switching to any network with classi�ers fewer

than c('�i ).

Thus, our solution concept is stronger than the semi-perfect equilibrium of Rubinstein

[1986], which requires only optimality of equilibrium �nite automata along the equilibrium

path. He o�ers two justi�cations for the restriction of semi-perfection: natural decay of

unused part of �nite automaton, and dynamic consistency. Both justi�cations are appli-

cable in our setup here. However, since our goal is to examine the complexity of networks

that survive in long run competition, dynamic consistency is necessary but not su�cient.

We believe that networks viable in the long run should have the local stability property

that a few rounds of mis-coordination between opposing networks due to small mistakes

should not provide incentives to for players to scrap their networks. The equilibrium of

�nite automata constructed by Rubinstein is not locally stable in our sense. One mistake

7 This assumption has strong analytical implications as well. In particular, under the incentives to save
on the complexity cost, the assumption implies that in equilibrium all hyperplanes that represent classi�ers
in a network in the frequency space must pass through the long run limit frequency. Unfortunately, we
are unable to state this assumption in terms of restrictions on the networks that are allowed. The results
of this paper do not exclude the existence of equilibrium where long-run averages do not converge.
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by one of the two equilibrium automata is su�cient to induce the two automata to punish

each other forever. Incidentally, the equilibrium constructed in our results is \globally"

stable: the restriction in De�nition 2.2 is satis�ed for all time period T and arbitrarily

large values of �.8 An additional reason for imposing local stability is that the restriction

simpli�es analysis. Without the restriction, the dynamics of transition of state variable

can be too complex. Together with the assumption that long run average frequencies con-

verge in equilibrium, the restriction of local stability allows us to focus on the long run

implications of strategies implemented by a pair of networks. This will be explained in the

next section.

3. Analysis

3.1. The Main Results

Our �rst result shows that only simple strategies can survive the strategic pressure.

Theorem 3.1. No locally stable equilibrium network has more than a single classi�er.

Proof. See the appendix.

Theorem 3.1 imposes a uniform bound on the complexity of locally stable equilib-

rium networks. This result should be contrasted with Rubinstein [1986] and Abreu and

Rubinstein [1988] where there is no such bound on the complexity of equilibrium automata.

The idea of this result is best described geometrically. Recall that each classi�er can

be viewed as a hyperplane in the unit simplex in IR4. One can imagine the empirical

frequency as a particle moving around in IR4 and passing through the hyperplanes induced

by di�erent classi�ers. It is easy to see that the empirical frequency must pass through

every hyperplane in�nitely often. If there is a hyperplane that the empirical frequency

does not visit after a certain period, a decision maker can achieve the same long run

8 But we do not know whether there exists equilibrium with � = 0 in De�nition 2.2. That is, we do
not know whether there are semi-perfect equilibria of the network game as de�ned by Rubinstein [1986].

{ 14 {



outcome even after eliminating the associated classi�er, which contradicts the equilibrium

requirement of minimal computational cost.

Note that the increment of the empirical frequency converges to 0 at the rate of 1=t.

If the limit of the empirical frequency is well de�ned, it must be the intersection of all

hyperplanes. Because all hyperplanes pass through a single point, the state space can be

divided into di�erent cones, each of which has its vertex at the limit frequency. One can

view local stability as the requirement that starting from any point in a small neighborhood

of the limit frequency, no player can improve his long run payo� from the game or achieve

the same payo� with a simpler network.

The rub of the proof is to show that against any network of the opponent, a player

can always �nd a hyperplane induced by the opponent's network and a initial point in

an arbitrarily small neighborhood of the limit point such that he can achieve the same

long run outcome by using a network with 3 classi�ers.9 This argument shows that in any

locally stable equilibrium, no player needs a network with more than 3 classi�ers. Then,

we reduce the number of classi�ers in equilibrium networks one by one given the bound on

complexity of equilibrium networks. In the end, we are left with single-classi�er networks

only. Networks with single classi�er are examined in our next result.

Theorem 3.2. An individually rational payo� vector v� can be supported by a locally

stable equilibrium if and only if [1] v� corresponds to a Nash equilibrium of the stage game,

or [2] v� is strictly individually rational and satis�es

v� 2 f�u(C;C) + (1� �)u(D;D)j� 2 (0; 1)g; (3:1)

or [3] v� is strictly individually rational and satis�es

v� 2 f�u(C;D) + (1� �)u(D;C)j� 2 (0; 1)g: (3:2)

Because the proof of Theorem 3.2 reveals the key idea of the proof of Theorem 3.1,

we state a complete proof for Theorem 3.2 while delegating the proof for Theorem 3.1 to

the appendix.

9 The set of such initial points contains an open set in the neighborhood of the limit point.
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The conditions (3.1) and (3.2) in Theorem (3.2) reduce the set of locally stable equi-

librium payo� vectors to at most two line segments in the payo� space of the stage game.

With networks with a single classi�er, it might seem improbable that any individually

rational payo� vector can be sustained by a locally stable equilibrium. But, Cho [1995]

demonstrates that networks with single classi�er can in fact sustain any individually ra-

tional payo� vector, if neither player considers the complexity cost of implementing the

network.

It is instructive to review the construction of the single classi�er equilibrium strategies

in Cho [1995]. Fix an individually rational payo� vector v� = (v�
1
; v�

2
). For each s 2 S and

i 6= j 2 f1; 2g, let �i 2 IR4 be the weights of the single classi�er of network used by player

i, determined according to

�i(s) = uj(s) � v�j ; (3:3)

and let B be a function that maps 1 to D and 0 to C. Player i's network is given by

h�i;B;Ci:

Note that player i punishes player j whenever player j has accumulated an average payo�

higher than v�j . On the other hand, if player j's average payo� falls below his equilibrium

payo�, player i plays C so that player j can improve his payo�. As a result, this pair of

networks induces a Nash equilibrium following any history.

In (3.3), the locally stable equilibrium payo� of player i is \enforced" by player j in the

sense that whenever player i's payo� exceeds his target, player j's punishment is triggered

and whenever player i's payo� falls below his target, player j chooses C. In such a case,

player i can simplify the complexity of the network by eliminating the single classi�er and

consequently, most equilibria with a single classi�er collapse.

We know that with no classi�er, a player can implement a repeated game strategy that

dictates D following every history, or C following every history. With such strategies, one

can sustain only the stage game pure strategy Nash equilibria as the long run outcome. The

di�cult part in proving Theorem 3.2 is to show that one can also sustain the individually

rational payo� vectors in (3.1) and (3.2).
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3.2. Necessity

The crucial �rst step in proving that the conditions stated in Theorem 3.2 are necessary

for an individually rational payo� vector to be sustained by a locally stable equilibrium is

to show that the weights determined by (3.3), although quite special, are in fact necessary

for a pair of networks with single classi�er to be a locally stable equilibrium.

Lemma 3.3. Fix a locally stable equilibrium payo� vector v = (v1; v2) where each player is

using a network with single classi�er. For each i = 1; 2, let �i(s) be the weight assigned to

s 2 S by the single classi�er of the network used by player i, and let the decision function

map 1 to D and 0 to C. Then there exists ki > 0 such that for any outcome s that is

realized with positive frequency in equilibrium and for j 6= i = 1; 2,

�i(s) = ki(uj(s) � vj): (3:4)

The proof of this lemma is given in the appendix of Cho [1996a] for the case of the

prisoner's dilemma game. Extension to any 2�2 stage game with non-empty set of strictly

individually rational payo� vector is straightforward; detailed proof is available from the

authors.

We are ready to show the necessity of the conditions stated in Theorem 3.2. In what

follows, we assume without loss of generality that the decision function of each player i's

network maps 1 to D and 0 to C so that player i chooses D if and only if

X
s2S

�i(s)f (s : h
T ) > 0

where �i(s) is the weight assigned to s 2 S by player i's single classi�er.

Fix a locally stable equilibrium '� such that v� = v('�). Individual rationality of v�

is obvious. Suppose that v� does not satisfy (3.1) or (3.2). Then either there is s�i such thatP
sj2Sj

f'� (s
�

i ; sj) = 1 (j 6= i 2 f1; 2g), or at least 3 outcomes are realized with positive

limit frequency. We will show that in the �rst case both players must be using a network

with no classi�er and v� corresponds to a Nash equilibrium payo� vector of the stage game,

and that in the second case v� cannot be sustained by locally stable equilibrium payo�s

by a pair of networks with single classi�er. We state the two cases as the following two

lemmas.
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Lemma 3.4. If 9s�i such that
P

sj2Sj
f'� (s

�

i ; sj) = 1, then in equilibrium player i uses a

network with no classi�er.

Proof of Lemma 3.4. Without loss of generality, let us assume that i = 1 and j = 2.

First suppose that f'� (s
�

1; C) = 1. Then we must have �2(s
�

1; C) � 0. Otherwise since

player 2 plays C only when
P

s2S �2(s)f (s : hT ) � 0, whenever (s�1; C) is played, some

other outcome must be realized within �nite periods, and the long run frequency of (s�1; C)

cannot be 1. But if �2(s
�

1; C) � 0, player 1 can enforce v�1 = u1(s
�

1; C) by switching to the

s�1-forever strategy as soon as (s�1; C) is played along the path.

Similarly, if f'�(s
�

1;D) = 1, we have �2(s
�

1; D) � 0, and player 1 can enforce v�1 by

switching to the s�1-forever strategy along the path.

Finally, suppose that f'�(s
�

1; C) + f'�(s
�

1;D) = 1 with f'�(s
�

1; C); f'�(s
�

1;D) > 0.

Since v�1 is individually rational, v
�

1 � u1(s
�

1;D). It follows that u1(s
�

1; C) � v�1 � u1(s
�

1;D).

Lemma 3.3 then implies that there is k2 > 0 such that

�2(s
�

1; C) = k2(u1(s
�

1; C) � v�
1) � 0;

�2(s
�

1; D) = k2(u1(s
�

1;D)� v�
1) � 0:

Suppose that player 1 uses the C-forever strategy. Then only (C;C) and (C;D) will be

realized, and X
s2S

�2(s)f(s : h
T ) = k2

"
TX
t=1

u1(C; s
t
2)=T � v�

1

#
;

where st2 2 fC;Dg is player 2's action in period t. Since player 2 plays D if the above sum

is positive and C otherwise, and since �2(C;D) � 0 and �2(C;C) � 0,

�2(C;D) �

TX
t=1

�2(C; s
t
2) = k2

"
TX
t=1

u1(C; s
t
2)� v�1T

#
� �2(C;C):

Dividing the above by T , we obtain v�1 as the long run average payo� for player 1.

Q.E.D.

It is clear that if player i uses the s�i -forever strategy, which can be implemented by

a network with no classi�er, the other player can achieve his equilibrium long run average

payo� by a network with single classi�er. Thus, both players must be using a network with

no classi�er. Furthermore, the equilibrium payo� vector v� must correspond to a Nash

equilibrium of the stage game.
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Lemma 3.5. There is no locally stable equilibrium where at least three outcomes are

realized with positive limit frequency.

Proof of Lemma 3.5. The key of the proof is to use Lemma 3.3 to identify a player who

can achieve his equilibrium payo� through the D-forever strategy or C-forever strategy.

Since the argument for each case considered below follows the same logic as the last case

in the proof of Lemma 3.4, we only identify the player and the deviation strategy with

which he can achieve his equilibrium payo�.

First, suppose that only (C;D), (D;D) and (C;C) are played with positive frequency.

By individual rationality, v�1 � v1 = max(u1(C;D); u1(D;D)). In order for (C;C), (C;D),

and (D;D) to support v�1 , u1(C;C) � v�1. By Lemma 3.3, �2(C;D) � 0 and �2(C;C) � 0.

Player 1 can then achieve v�1 by using the C-forever strategy.

Suppose that only (C;D), (D;D) and (C;C) are played with positive frequency. By

individual rationality, v�1 � v
1 = max(u1(C;D); u1(D;D)). Thus, u1(D;C) � v�1 . By

Lemma 3.3, �2(D;D) � 0 and �2(D;C) � 0. Player 1 can achieve v�1 by using the

D-forever strategy.

Next, suppose that only (C;C), (D;C) are (D;D) are played with positive frequency.

By individual rationality, v�2 � v2 � max(u2(D;D); u2(D;C)). Thus, u2(C;C) � v�2. By

Lemma 3.3, �2(D;C) � 0 and �2(C;C) � 0. In this case, player 2 can enforce v�2 by

playing C forever.

Finally, suppose that (C;C), (D;C) and (C;D) are played with positive frequency

(including the case where all four outcomes are realized with positive frequency). If

ui(C;C) � v�i for each i = 1; 2, Lemma 3.3 implies that �i(C;C) � 0. Recall that each

player plays C when
P

s2S �2(s)f (s : h
T ) � 0. Then once (C;C) is realized, each player

will play C for the rest of the game, contradicting the assumption that (C;C), (D;C)

and (C;D) are played with positive frequency. Thus, there is i such that v�1 < ui(C;C),

say i = 1. By individual rationality, v�1 � v1 � u1(C;D), and Lemma 3.3 implies that

�2(C;C) � 0 and �2(C;D) � 0. Player 1 can then achieve v�1 by using the C-forever

strategy.

Since in each of the cases above, there is a player that can achieve his equilibrium

payo� through a network with single classi�er, there is no locally stable equilibrium of a
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pair of networks with single classi�ers where at least 3 outcomes are realized with positive

limit frequency. Q.E.D.

It remains to show the strict individual rationality of v� that satis�es (3.1) or (3.2).

Suppose that there exists � 2 (0; 1) such that v� satis�es v� = �u(C;C) + (1� �)u(D;D)

and v�1 = v1 = max(u1(C;D); u1(D;D)). Since � 2 (0; 1), if u1(C;D) � u1(D;D), we

must have u1(C;C) = u1(D;D). By the de�nition of v
1, u1(D;C) � u1(C;C) = u1(D;D).

But then by using the D-forever strategy, player 1 can obtain at least v�1. On the other

hand, if u1(C;D) > u1(D;D), to support v�1 by u1(D;D) and u1(C;C), we must have

u1(C;C) > u1(C;D) > u1(D;D). But then player 1 can obtain at least v�1 by using the

C-forever strategy. In either case, v� cannot be sustained by a pair of networks with single

classi�er. Q.E.D.

3.3. Su�ciency

The analysis in the last subsection seems to suggest that no pair of networks with single

classi�er constitutes a locally stable equilibrium, since at least one player has incentives to

replace his network with another one with no classi�er. However, only two outcomes need

to be realized with positive frequency to support the payo� vectors that satisfy (3.1) and

(3.2), and Lemma 3.3 imposes no restrictions on outcomes realized with zero frequency. By

exploiting this freedom of choosing weights, we can construct a pair of networks with single

classi�er such that neither player has incentives to switch to a network with no classi�er

to save the complexity cost, to take advantage of the simplicity of his opponent's network.

Moreover, the pair of networks satis�es the local stability condition.10 The construction

then proves the su�ciency of the conditions in Theorem 3.2.

For each s 2 S, let fs be the unit vector in �4 that is concentrated on s, and for any

two vectors f; f 0 2 �4, let

[f; f 0] = f�f + (1� �)f 0j� 2 [0; 1]g

10 In fact, it satis�es a stronger global stability condition, as in Smale [1980].
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be the closed line segment that connects f and f 0.

[1] If v� can be sustained by a Nash equilibrium of the stage game, we can support v� by a

pair of networks with no classi�er that always plays the Nash equilibrium action following

every history. Clearly, this pair of networks is locally stable.

[2] Fix a strictly individually rational v� that satis�es (3.1). Then 9� 2 (0; 1) such that

f� = �fC;C + (1� �)fD;D;

and for each i = 1; 2,

v�i =
X
s2S

ui(s)f
�(s):

Since v� is strictly individually rational, 8i = 1; 2, ui(C;C) > v�i > ui(D;D). Furthermore,

strict individual rationality implies that there is �1 2 (0; 1) close enough to 0 such that

8i = 1; 2, X
s2S

ui(s)f
1(s) < v�i ;

where f1 = �1fD;D + (1� �1)fD;C. Similarly, there is �2 2 (0; 1) such that 8i = 1; 2,

X
s2S

ui(s)f
1(s) < v�i ;

where f2 = �2fD;D + (1� �2)fC;D.

Let H� be the hyperplane spanned by f�, f1 and f2:

H� =

(
�1f1 + �2f2 + �3f�

�����k � 0;

3X
k=1

�k = 1

)
:

Choose the directional vector of H� so that

fD;D 2 H
�

:

For each player i, let the weights �i of the single classi�er of his network and the decision

function Bi be chosen such that following any history hT player i plays C if and only if

f (hT ) 2 H
�

. The initial action s1i of each player can be arbitrary.
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We claim that the pair of candidate networks with single classi�er constructed above

forms a locally stable equilibrium. This will follow from the following three claims: (i) if

both players use the candidate networks, the long run frequency of outcomes converges to

f� following any history; (ii) against the candidate network of his opponent and following

any history, no player i can obtain a long run average payo� that exceeds v�i with any

repeated game strategy; and (iii) following any history, each player i gets a strictly lower

payo� than v�i if he uses a network with no classi�er.

By the construction of H�, fC;C 2 H� and fD;D 2 H
�

. Given any history, if both

players use the candidate networks thereafter, only (C;C) and (D;D) will played. Since by

construction (C;C) is played inH
�

and (D;D) is played inH�, the long run frequency con-

verges to the intersection between H� and [fC;C ; fD;D], which is just f�. This establishes

the �rst claim.

To see that against the candidate network of player i, player j (j 6= i = 1; 2) can get

at most v�j with any repeated game strategy, note that by construction for any f 2 H
�

,P
s2S uj(s)f (s) � v�j . Therefore, if there exists T such that

P
s2S uj(s)f (s : hT ) > v�j ,

then f (s : hT ) 2 H�. Thus, player i plays D, and

X
s2S

uj(s)f
T
i (s) �

X
s2S

uj(s)f
T+1
i (s):

Since the increment of the average payo� is of the order of 1=T ,

X
s2S

uj(s)f
T
i (s) � v�j +

maxs2S juj(s)j

T
:

Therefore,

lim sup
T!1

X
s2S

uj(s)f
T
i (s) � v�j :

Finally, we verify that if following any history player i uses a network with no classi�er,

then player i's long run average payo� is strictly less than v�i . Note that by the construction

of H�, fD;C; fC;D 2 H�. If player 1, say, uses the C-forever strategy, then only (C;D) and

(C;C) will be realized with positive frequency. Since player 2 plays C inH
�

but fC;C 2 H,

and he plays D inH� and fC;D 2 H�, only (C;D) will realized with positive frequency. By

strictly individual rationality, v�1 > u1(C;D). Thus, player 1 is strictly worse o� by using
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the C-forever strategy. On the other hand, if player 1 uses D-forever strategy, only (D;D)

and (D;C) will be realized with positive frequency. Since (D;D) is realized in H� but

fD;D 2 H, and (D;C) is realized in H
�

but fD;C 2 H, the long run frequency of outcome

must be the intersection between H� and [fD;D; fD;C], which is f1. By the de�nition of

f1, player 1 gets a strictly lower long run payo� than v�1 by using the D-forever strategy.

[3] Fix a strictly individually rational v� that satis�es (3.2). Then, 9� 2 (0; 1) such that

f� = �fD;C + (1� �)fC;D;

and for each i = 1; 2,

v�i =
X
s2S

f�(s)ui(s):

Given a positive integer M , de�ne

fM =
1

M + 1
[fC;C +MfD;D] :

By strict individual rationality, for each i = 1; 2, v�i > ui(D;D). Therefore, we can choose

M su�ciently large so that for each i = 1; 2,

X
s2S

ui(s)f
M (s) < v�i :

Let Ho be the hyperplane spanned by fM and [fC;D; fD;C]:

Ho =
�
�fM + (1� �)f j9� 2 [0; 1]; f 2 [fC;D; fD;C ]

	
:

By de�nition, Ho separates fC;C from fD;D. Choose the directional vector so that

fD;D 2 H
o
:

Since v� is strictly individually rational, we can �nd �1 2 (0; 1) such that

X
s2S

u2(s)f
1(s) < v�2;

where f1 = �1fD;C + (1� �1)fC;C . Similarly, choose �2 2 (0; 1) such that

X
s2S

u1(s)f
2(s) < v�1:
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where f2 = �2fC;D + (1 � �2)fC;C. For each i = 1; 2, let Hi be the hyperplane spanned

by f�, fM and f i, and choose the directional vector so that

fD;D 2 H
i
:

Note that by construction, for each i = 1; 2 and 8f 2 H
i
,

X

s2S

ui(s)f (s) < v�i :

For player 1, let the weights �1 of the single classi�er of his network and the decision

function B1 be chosen such that following any history hT player 1 plays C if f (hT ) 2 H
1

and D otherwise. For player 2, let the weights �2 and the decision function B2 be such

that player 2 plays D if f (hT ) 2 H2 and C otherwise. Notice a slight asymmetry between

the two candidate networks. Recall that we have de�ned H and H as the open half spaces

above and below H. The candidate networks are constructed to make sure that (D;C) is

played if f (hT ) 2 H1 \H2.

Following the argument for the case of the main diagonal, we can show that against

player i's linear strategy constructed above, player j cannot receive more than v�j through

any repeated game strategy, and that following any history, each player i is strictly worse

o� by using a network with no classi�er. To prove that the candidate networks form a

locally stable equilibrium, we only need to verify that the long run outcome is exactly f�

if both players use the candidate networks.

Suppose that (C;C) and (D;D) are played only �nitely many times. Then, 9T � such

that 8T � T �, sT = (C;D) or sT = (D;C). The long run frequency must be located on

[fC;D; fD;C ]. Moreover, by the construction of the candidate networks, (C;D) is played

following T if f(hT ) 2 H
1
\ H2 but fC;D is located in H1 \ H

2
, and (D;C) is played

following T if f(hT ) 2 H1 \ H
2
but fC;D is located in H

1
\ H2. Thus, the long run

frequency must be located on H1 \ H2, and hence on H1 \ H2 \ [fC;D; fD;C ], which is

precisely f�.

To establish the desired conclusion, it su�ces to show that following any history, (C;C)

and (D;D) are played only �nitely many times. Note that (C;C) is played following ht only
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if f (ht) 2 H
o
. By construction, f (ht) 2 H

o
if and only if f (D;D : ht)=f (C;C : ht) > M ,

or equivalently,

F (D;D : ht) >MF (C;C : ht);

where F (s : ht) = tf (s : ht) for each s 2 S. Thus, if (C;C) is played in�nitely many

times, then 9T � 1 such that F (D;D : hT ) < MF (C;C : hT ) and sT = (D;D). Such T

obviously exists if (D;D) is played in�nitely many times. De�ne

k =MF (C;C : hT ) � F (D;D : hT ):

Then, for each t = T; : : : ; T +k, F (D;D : ht) < MF (C;C : ht), and (C;C) is never played

between T and T + k. At T + k,

F (D;D : hT+k) =MF (C;C : hT+k):

By the de�nition of Ho, following any history ht such that f (ht) 2 Ho, either (C;D) or

(D;C) is played. Since [fC;D; fD;C ] �Ho, 8t � T + k, f (ht) 2 Ho. Thus, following T + k,

(C;C) or (D;D) is never played, which shows that (C;C) and (D;D) are played only

�nitely many times. Q.E.D.

If a strategic plan is implemented by a �nite automaton, then the set of equilibrium

outcomes of the automaton game may be sensitive to whether the stage game is a normal

form or an extensive form (Piccione and Rubinstein [1993]). For example, if the stage game

is a 2� 2 normal form game, then the set of Nash equilibrium outcomes of the automaton

game is roughly the two diagonals. However, if the stage game is an extensive form game

that has the same normal form game, then the set of Nash equilibrium outcomes of the

automaton game collapses to the set of Nash equilibrium outcomes of the stage game. The

networks considered in this paper summarize a history of play by counting the number of

each outcome realized in the history, and ignores how such an outcome has occurred or

how the opponent should have played o� the equilibrium path. As a result, our model

is not sensitive to the formal structure of the stage game, and the same analysis applies

when the stage game is an extensive form game.
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4. Concluding Remarks

This paper examines the implications of the complexity cost in implementing repeated

game strategies through networks with �nitely many classi�ers. We examine locally stable

equilibria where no player has an incentives to change his network to achieve a higher than

equilibrium payo� or the same equilibrium payo� with a network with fewer classi�ers.

We demonstrate that in the locally stable equilibrium no player uses a network with more

than a single classi�er. Moreover, the set of locally stable equilibrium payo� vectors lies

on two line segments in the payo� space of the stage game.

It must be emphasized that the results hinge on the fact that the network in our model

does not adjust itself to changing environment. However, if the network can adjust itself in

a simple \back propagation" process, a complex network can survive and even outperform

a simple network. Cho [1996b] studies a repeated game played by simple neural networks

with a single classi�er. It remains to investigate how more complex networks with learning

capability evolve over time.

Appendix

This appendix presents the proof of Theorem 3.1. We reduce the complexity of equilibrium

networks in three steps. First we show that in any equilibrium, each player needs to use

a network with at most three classi�ers. This is the crucial step. By exploiting the

assumption that the equilibrium long run frequencies of outcomes are well-de�ned, we

construct a network with three classi�ers that guarantees a player his equilibrium payo�

regardless of the complexity of the network used by his opponent. In the second step we

construct a network with two classi�ers for a player to obtain his equilibrium payo� against

any network of his opponent with three classi�ers. In the third and last step we reduce the

number of classi�ers to one. These three steps are in section A.2, A.3 and A.4 respectively.

Our proof involves mainly geometric arguments. In section A.1, we transform the \state

space" of networks in order to use geometric arguments more e�ectively.

A.1. Transformation of States
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Since a network chooses an action in each period based on the empirical frequencies of the

outcomes, the natural state space of a network is �4. However, we �nd it more convenient

to use a state space that is explicitly three-dimensional. Fix an equilibrium '� with long

run payo�s v�i to player i. By assumption, the equilibrium long run frequency f�' is well-

de�ned. Given any history hT , de�ne

vf (h
T ) = (v1(h

T )� v�1 ; v2(h
T )� v�2 ; f (D;D : hT ) � f�'(D;D))

as the \average state variable," where

vi(h
T ) =

1

T

TX

t=1

ui(s
t):

By the \average state space" Vf , we mean the collection of all average state variables.

Clearly, Vf is a convex compact set spanned by 4 extreme points fvf (s) : s 2 Sg where

vf (s) =
�
u1(s) � v�1; u2(s)� v�2 ;1fs=(D;D)g � f�'(D;D)

�
:

Whenever the meaning is clear from the context, we write average state variable as

(vT1 ; v
T
2 ; f

T (D;D)) instead of (v1(h
T ); v2(h

T ); f (D;D : hT )).

In section 2.2 we have interpreted a classi�er as a hyperplane in �4. It is easy to see

that the hyperplane becomes a plane in the average state space. To ease the notational

burden, we continue to refer to the classi�er as the hyperplane in the average state space.

In the average state space, the equilibrium is represented by the origin. We also refer to it

as the \target." It follows directly from the de�nition of locally stable equilibrium that the

hyperplane associated with each classi�er in an equilibrium network must pass through

the target in the average state space.

Often, it is more convenient to work with the \gross" instead of average state variable.

The gross state variable wf (h
T ) for given hT is simply the average state vf (h

T ) multiplied

by T . We often suppress hT to simplify notation. The increment of the gross state variable

is vf (s) after each realization of s 2 S. Let WT
F be the gross state space following hT .

One can easily verify that WT
F is the convex hull of fTvf (s) : s 2 Sg and the origin. Since

each extreme point fTvf (s) : s 2 Sg of the gross state space expands \outward", the gross

state space grows in size as T !1.
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Given a hyperplane H in the average state space, we can obtain the corresponding

hyperplane in the gross state by \expanding" it with T . Because our analysis relies mainly

on the orientation of the hyperplanes, we will use the same notation H to represent the

corresponding hyperplane in the gross state space. To emphasize the geometric nature

of the network, we call a network with K classi�ers a K-hyperplane strategy, and use

hyperplanes and classi�ers interchangeably. We will also need the following notations. Let

[x; y] denote the closed line segment connecting x; y 2 IR3, and �(s; s0; s00) denote the

triangle spanned by vf (s), vf (s
0) and vf (s

00). We call �(s; s0; s00) a \surface" of Vf .

A.2. No More than 3 Hyperplanes

Proposition A.1. Fix any equilibrium '� with f�'(s) > 0 for each s 2 fC;Dg2. No

equilibrium network entails more than 3 hyperplanes. Moreover, if 9s 2 S such that

f�'(s) = 0, then no equilibrium network has more than 2 hyperplanes.

Proof. Fix the equilibrium network of player 2. We assume that f�'(s) > 0 for each

s 2 fC;Dg2. In this case, the target is in the interior of the average state space. The other

case can be handled similarly. Let R2(C) be the region in the average state space where

the player 2's network dictates C.

Lemma A.2. R2(C) \ [vf (D;D); vf (C;D)] 6= ;

Proof. Suppose the contrary. Consider the triangle formed by 0, vf (D;D), and

vf (C;D). Since R2(C)\ [vf (D;D); vf (C;D)] = ;, player 2 always plays D when the state

variable is located on the triangle. Thus, starting from a point on the triangle and arbitrar-

ily close to the target in the average state space, the continuation game outcome is either

(C;D) or (D;D). As a result, the state variable will drift away to [vf (C;D); vf (D;D)].

This contradicts local stability. Q.E.D.

Lemma A.3. R2(C) � fvf : v1 � 0g.
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Proof. Suppose that R2(C) n fvf : v1 � 0g 6= ;. Then R2(C) n fvf : v1 � 0g must

intersect at least one surface of the average state space Vf . We shall show that player 1 has

a strategy that generates a higher payo� than his target, which contradicts the hypothesis

that R2(C) is part of an equilibrium. The construction of the deviation strategy di�ers

slightly depending upon the surface which R2(C) n fvf : v1 � 0g intersects. We will

describe only the case where

[R2(C) n fvf : v1 � 0g] \�(C;C;D;D;C;D) 6= ;:

The remaining cases follow from the same logic.

Note that by individual rationality, player 1 receives the highest payo� at vf (C;C) in

�(C;C;D;D;C;D). If vf (C;C) 2 R2(C), player 1 can obtain v1(C;C) by sticking to C

once the state variable in on �(C;C;D;D;C;D). Thus,

vf (C;C) 62 R2(C):

Then, there exists v�f 2 R2(C) \�(C;C;D;D;C;D) such that v�f 6= vf (C;C) and player

1 receives a higher payo� in v�f than in any vf 2 R2(C) \ �(C;C;D;D;C;D). By the

de�nition of v�f , [vf (C;C); v
�
f ] has no intersection with R2(C) other than v

�
f itself. Let H1

be the boundary hyperplane of R2(C) so that v�f 2 H1. Choose the directional vector of

H1 such that

vf (C;C) 2 H
1:

In the neighborhood of H1, player 2's strategy is completely determined by H1: player

2 plays D in H1 and C in H
1
. We will show that player 1 has a strategy that forces

the average state variable to converge to v�f 2 H1, which contradicts the assumption that

R2(C) is part of player 2's equilibrium strategy.

Let H(v�f ) be the hyperplane spanned by v�f , vf (C;C) and 0. Clearly, H(v�f ) separates

vf (D;D) from vf (C;D), and

vf (D;D) 2 H(v�f ):

Consider player 1's strategy that dictates D if the state variable is in H(v�f ) \H
1, and D

otherwise. In H
1
, (C;C) is played. Since vf (C;C) 2 H

1, the state variable moves toward
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H1. InH1, (D;D) and (C;D) are played. The state variable converges toH(v�f ) and moves

toward H
1
, since (C;D) is played in H(v�f ) while vf (C;D) 2 H(v�f ), and (D;D) is played

in H(v�f ) while vf (D;D) 2 H(v�f ). Therefore, the state variable converges to H
1 \H(v�f ).

Since only (C;C), (D;D) and (C;D) are realized, the state variable converges to v�f on

�(C;C;D;D;C;D). Q.E.D.

[Insert Figure 1 Here]

Construct two 2 hyperplanes in the average state space as depicted in Figure 1. Let

H2 be the hyperplane determined by 0, vf (D;C), and vf (C;C). Let H
3 be determined by

0, vf (D;D) and vf (C;D). Note that by construction,

vf (D;D) 2 H
2
; vf (C;D) 2 H2;

vf (D;C) 2 H
3
; vf (C;C) 2 H

3:

De�ne vD =H3 \ [vf (C;C); vf (D;C)] and vC =H2 \ [vf (D;D); vf (C;D)]. By individual

rationality, at vC, player 1's payo� is below the target. It follows that at vD, player 1's

payo� is above the target. By Lemma A.3, vD 62 R2(C). Therefore, there is a hyperplane

H1 of player 2's network such that player 2 plays D in its vD side and C in its vC side.

Choose the directional vector of H1 such that vC 2 H
1
. In the neighborhood of H1, player

2's strategy is entirely determined by H1. Consider the following strategy of player 1:

play D if and only if the state is in (H3 \H
1
) [ (H2 \H1), as depicted in the right of

Figure 1. Note that this strategy can be carried out by a network with three classi�ers.

We want to show that given the two strategies of player 1 and player 2, there is \self-

containing" neighborhood in the gross state space in that once the state variable falls into

the neighborhood, it will stay there for the rest of the game.

Fix the gross state variable following a history. When the gross state variable is inH1,

(D;D) and (C;D) are realized. Note that vf (D;D) 2 H
2
, but (D;D) is realized in a subset

of H2. Thus, as (D;D) is realized, the gross state variable must move toward H2 in H2.

Similarly, vf (C;D) 2 H2, but (C;D) is realized in a subset of H
2
. As (C;D) is realized,
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the gross state variable moves toward H2 in H
2

. Since H3 is spanned by 0, vf (D;D) and

vf (C;D), the gross state variable maintains the same distance to H3 as (C;D) and (D;D)

are realized. Since vC = H2 \ [vf (D;D); vf (C;D)], as (C;D) and (D;D) are realized,

the average state variable must move toward vC which is located in H
1

. Thus, in a �nite

number of periods (C;D) and (D;D), the gross state variable enters H
1

.

We can apply a symmetric argument in H
1

to show that as (C;C) and (D;C) are

realized, the state variable moves toward vD in the average state space, while the gross

state variable maintains the same distance from H2. Each time the gross state variable

passes throughH1, it must move towardH2 orH3. Therefore, there exists a self-containing

neighborhood in the gross state space. The size of the neighborhood in the gross state space

is completely determined by the orientation of H1. The gross state space expands as the

game continues. When the gross state variable falls into the self-containing neighborhood,

player 1 can switch to the 3-hyperplane strategy. Then gross state variable will remain

in the neighborhood, implying that player 1 obtains his equilibrium payo� with the 3-

hyperplane strategy. This completes the proof of Proposition A.1. Q.E.D.

A.3. No More than 2 Hyperplanes

Proposition A.4. There is at least one player who uses at most two hyperplanes in any

equilibrium.

Proof. Local stability implies that in any equilibrium, vf (D;D) 2 R1(C) [ R2(C).

To see this, consider the line segment [0; vf (D;D)]. Since Ri(C) is a cone for each i, if

vf (D;D) 62 R1(C) [ R2(C), the line is contained in a region where both players play D.

Once the state variable is in the region, (D;D) will be played for the rest of the game

and the long run outcome is (D;D), which contradicts local stability. Without loss of

generality, we assume for the rest of the paper that

vf (D;D) 2 R2(C): (A:1)
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By Proposition A.1,R2(C) is formed by at most 3 hyperplanes. LetH2j be the bound-

ary hyperplanes where j = 1; 2; 3. Choose the directional vector such that vf (D;D) 2 H
2j

for each j. By (A.1),

vf (D;D) 2

3\

j=1

H
2j
� R2(C):

Lemma A.5. There exists at least one hyperplane, say H2, of player 2's network such that

[vf (D;D); vf (C;D)] �H
2

.

Proof. Suppose not. Then, for each j = 1; 2; 3, vf (C;D) 2 H
2j . Then, 9�0 > 0 such that

8� 2 [1; �0], (1 � �)vf (C;D) 2 H
2j
, for each j = 1; 2; 3. Thus, (1 � �)vf (C;D) 2 R2(C).

But, by individual rationality u1(C;D) � v�
1
, player 1 obtains a payo� greater than his

target payo� at (1� �)vf (C;D). This contradicts Lemma A.3. Q.E.D.

We will show that player 1 has a strategy with 2 hyperplanes to achieve his equilibrium

payo�. One hyperplane is H2. The other one is H� with appropriate choice of directional

vector such that

0 2 H�;

vf (D;C) 2 H
�; vf (D;D); vf (C;D); vf (C;C) 2 H

�

;

H� \ [vf (C;C); vf (D;C)] 2 H2;

H� \H2 \�(C;C;C;D;D;C) 6= ;:

(First, choose the triangle spanned by 0, vf (D;D) and vf (C;D) in the average state

space. Next, move this triangle by slightly shifting the vertex at vf (D;D) toward vf (D;C)

along [vf (D;C); vf (D;D)], and then by slightly shifting another vertex at vf (C;D) toward

vf (D;C) along [vf (D;C); vf (C;D)]. Let H� be the hyperplane that embeds resulting

triangle.) Consider the following strategy of player 1 determined by H2 and H�: play D

if and only if the state variable is in H
2

\H
�

. We now show that player 1 achieves his

target payo� with the above strategy.

In the neighborhood of H2 \H�, player 2 plays C in H
2

and D in H2. There exists a

self-containing neighborhood of H2 \H�. To see this, note that only 3 outcomes, (C;C),
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(D;C), and (C;D), are realized in the neighborhood of H2 \H�. (C;C) and (D;C) are

realized in H
2

. Since vf (C;C) 2 H
�

and vf (D;C) 2 H�, the state variable converges

to H� \H
2

. But since H� \ [vf (C;C); vf (D;C)] 2 H
2, the state variable moves toward

H2\H�. (C;D) is realized inH2, but since vf (C;D) 2 H
2

, the state variable moves toward

H2 \H�. Therefore, for the all three possible orientations of H2, there is a self-containing

neighborhood ofH2\H�. Moreover, since (D;D) is not realized, the average state variable

converges to H2 \H� \�(C;C;C;D;D;C), which gives player 1 his equilibrium long run

payo�. This completes the proof of Proposition A.4. Q.E.D.

A.4. No More Than a Single Hyperplane

This is the third and last step in the proof of Theorem 3.1. We will �rst show that there is

at least one player who can achieve his equilibrium long run payo� with a single hyperplane,

if the target is in the interior of the average state space. To explain the key idea of the

proof, we �rst examine a highly stylized case. Assume that each player is using a single

hyperplane strategy. By Lemma 3.3, player i's hyperplane Hi must be such that he plays

D if and only if his opponent's payo� is below the target. Since each player's strategy is

conditioned only on the average payo�, we can describe the strategy in the payo� space,

a subset of IR2 as depicted in Figure 2.

[Insert Figure 2 Here]

%put vf (C;D) [rb] at -0.1 8.1

One can easily check that following any history, the average payo� vector induced

by this pair of strategies converges to the target payo� vector.11 We examine how the

frequency of outcomes change when we rotate H1 \counterclockwise" around the target

payo� to H� as depicted in Figure 2. Notice that as we rotate H1 toH
�, the regions where

(C;C) and (D;D) are realized are \squeezed". Let � > 0 be the sharp angle between H�

11 For precise logic, see Cho [1995].
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and H2. It is easy to show that for any � > 0, the limit payo�s induced by the pair of

the single hyperplane strategies are still the target payo� vector. For the following lemma,

consider a hyperplane passing through the H� \H2, and parallel to [vf (C;D); vf (D;C)].

Denote this hyperplane as Ho.

Lemma A.6. [1] If [vf (C;D); vf (D;C)] 2 H
o, then 9 � > 0 such that 8� 2 (0; �), the

limit frequency of (C;C) is 0. [2] If [vf (C;D); vf (D;C)] 2 H
o
, then 9 � > 0 such that

8� 2 (0; �), the limit frequency of (D;D) is 0.

Proof. We only examine [1] which is depicted in Figure 2. The other case follows from

the same logic. Suppose that in period T , the gross state variable is in H
o, and in period

T + k (k � 1), (C;C) is played. Then, there exists non-negative k0 < k such that in period

T + k0 (D;D) is played and the state variable enters H
o
. This is because if (C;D) or

(D;C) is played in Ho, the state variable cannot approach H
o
, and (C;C) is played in a

subset of H
o
. We will show that if � > 0 is su�ciently small, (C;C) is never realized after

T + k0. This then implies that starting with any initial condition in Ho, (C;C) will not

be realized in the continuation of the play. The lemma then follows from combining this

result with the fact that starting with any initial condition in H
o
, the state variable drifts

into H0 in �nite number of periods because vf (C;D), vf (D;C) and vf (C;C) 2 H�.

Note that if (C;C) is not played after T + k0, the state variable must return to Ho

in �nite number, say N , of periods as (C;D) and (D;C) are played. Both vf (C;D) and

vf (D;C) are in Ho. Furthermore, we can choose N as a uniform upper bound. To see

this, note that when the state variable enters H
o
, its distance from Ho is bounded by the

size of the increment of the gross state variable. When either (C;D) or (D;C) is played

in H
o
, the distance between the state variable and Ho decreases.

Let us determine the area from which the state variable can move intoH
o
after (D;D)

is played. First, �nd the hyperplane such that if it is shifted by the vector vf (D;D), it

coincides with Ho. The triangle formed by this hyperplane and the area where (D;D) is

played is what we are looking for. Now, shift this triangle by vf (D;D). If this triangle

has no intersection with the area where (C;C) is played, (C;C) does not immediately

follow (D;D). In this case, the triangle must be contained entirely in either the (C;D) or
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(D;C) area, i.e., either (C;D) or (D;C) follows (D;D). Then we can shift the triangle by

vf (C;D) or vf (D;C). If there exists an intersection with the (C;C) area after the initial

shift, we reduce � > 0 until this intersection disappears. Then, the resulting triangle is

again contained entirely in either the (C;D) or (D;C) area. Either (C;D) or (D;C) is

played, and we can shift it accordingly. After we repeat the same exercise N times, the

triangle must be entirely contained in Ho, since the state variable returns to H
o after

(C;D) or (D;C) is played N times in H
0

. The resulting � is the � stated in the lemma.

It is clear that for any smaller � > 0, the shifted triangles still do not intersect with the

(C;C) area. Q.E.D.

Lemma A.7. Suppose that 0 2 �(C;D;D;C; s) with s 2 f(C;C); (D;D)g. Then if there

is a hyperplane of player i which separates vf (C;D) from vf (D;D), player j 6= i has a

strategy with a single hyperplane that enforces his equilibrium payo�. [2] Suppose that

0 2 �(C;C;D;D; s) with s 2 f(C;D); (D;C)g. Then if there is a hyperplane of player i

that separates vf (C;C) from vf (D;D), player j 6= i has a single hyperplane strategy that

enforces his equilibrium payo�.

Proof. We only prove the case where

0 2 �(C;D;D;C;C;C): (A:2)

The other cases can be shown with similar arguments. By Proposition A.1, each player

uses a strategy with two hyperplanes. Suppose that player 1's strategy is formed by H1

and H3, and player 2's strategy is formed by H2 and H4. It follows from Lemma A.3

that each Ri(C) is a convex cone formed by the two hyperplanes. To prove the lemma,

we assume that

vf (C;D) 2 H1; vf (D;C) 2 H
1

; (A:3)

and show that player 2 has a single hyperplane strategy to achieve his target.

By (A.2) and (A.3), we can construct a hyperplane H� (by rotating H1 slightly as we

did in Lemma A.6) such that

H� \H1 \�(C;C;C;D;D;C) = f0g;
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vf (D;C) 2 H
�;

vf (C;D) 2 H
�

;

H� \ [vf (C;D); vf (D;C)] 2 H
1

:

Since 0 2 �(C;D;D;C;C;C), there is a hyperplane Ho such that with an appropriate

directional vector for Ho, we have H� \H1 �Ho and vf (D;C); vf (C;D) 2 H
o
. Invoking

the same logic as the proof of Lemma A.6, we can show that the long run frequency induced

by H1 andH� must be 0 if the sharp angle � > 0 between the two hyperplane is su�ciently

small. Q.E.D.

Proposition A.8. If the target is in the interior of the average state space, then at least

one player uses a single hyperplane strategy in equilibrium.

Proof. By (A.1), we can assume that vf (D;D) 2 R2(C) = H
2

\H
4

. Since 0 is in the

interior of Vf , by Lemma A.3,

` = H2 \H4 � fvf : v1 = 0g: (A:4)

Since Vf is convex, and ` passes through a point in the interior of Vf , ` must has an

intersection with exactly two surfaces of Vf . For the rest of this proof, by vxf for some

superscript x, we mean (vx
1
; vx

2
; fx) 2 Vf . For vf ; v

0

f 2 Vf , de�ne

[vf ; v
0

f ] = f�vf + (1� �)v0f : � 2 [0; 1]g;

(vf ; v
0

f ) = f�vf + (1� �)v0f : � 2 (0; 1)g:

First, suppose for some s 2 f(C;C); (D;C)g,

` \�(C;D;D;D; s) 6= ;:

De�ne vof = ` \�(C;D;D;D; s). By (A.4), vo
1
= 0. Since vo

1
is an equilibrium payo�,

vo
1
� v

1
� max [u1(D;D); u1(C;D)] :
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If 9vf 2 �(C;D;D;D; s) such that v1 � v
1
, then it is necessary that u1(s) � vo

1
. By

Lemma A.3, there exists a boundary hyperplane, say H2, such that

v�f =H2 \ [vf (D;D); vf (s)] 6= ;: (A:5)

By Lemma A.3, v�
1
� vo

1
= 0. Moreover,

vf (D;C) 2 H2: (A:6)

For � 2 IR, de�ne v�f = �vof + (1� �)v�f . Then, 8� � 1,

v�
1
� vo

1
= 0: (A:7)

Since vof ; v
�
f 2 H2, v�f = fv�f : � 2 IRg \ [vf (D;D); vf (s)]. De�ne

�0 = maxf� � 1 : v�f 2 �(C;D;D;D; s)g:

Since v�f 2 [vf (D;D); vf (s)], v
�0

f must be in either [vf (C;D); vf (D;D)] or [vf (C;D); vf (s)].

By (A.7), at v�
0

f , v�
0

1
� vo

1
. But, 8vf 2 (vf (D;D); vf (C;D)), v1 < v

1
� vo

1
. Therefore, v�

0

f

cannot be located in (vf (C;D); vf (D;D)), which implies that

v�
0

f 2 [vf (C;D); vf (s)]: (A:8)

If s = (C;C), then by (A.5), vf (C;C) 2 H2. By Lemma A.7, player 1 can enforce

vof 2 �(D;D;C;D;C;C). If s = (D;C), then by (A.8) and (A.6), vf (C;D) 2 H
2

. By

Lemma A.7, player 1 can enforce vof 2 �(D;D;C;D;D;C).

It remains to prove the proposition when ` intersects neither �(C;D;D;D;C;C) nor

�(C;D;D;D;D;C). Since ` intersects exactly 2 surfaces of Vf , this case is equivalent to

vuf =` \�(C;C;D;C;D;D) 6= ;

vdf =` \�(C;C;D;C;C;D) 6= ;:
(A:9)

By (A.4), vu
1
= vd

1
= 0. If there exists H2j such that vf (C;C) 2 H2j , Lemma A.7 implies

that player 1 can enforce vuf by a single hyperplane.
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Let us assume for the rest of the proof that vf (C;C) 2 H
2j

for j = 1; 2, which is

equivalent to

[vf (D;D); vf (C;C)] � H
2

\H
4

:

Under this assumption, Lemma A.3 implies that

vd
1
> u1(C;C) (A:10)

which is possible only if u1(D;C) = maxs2S u1(s) � u1(C;C). It then follows that

vf (D;C) 2 fvf : v1 � 0g, and that there exists a boundary hyperplane, say H
2, such

that v�f =H
2 \ [vf (D;D); vf (D;C)]. By Lemma A.3, v�

1
� vu

1
. For each � 2 IR, de�ne

v�f = �vuf + (1� �)v�f :

Clearly, 8� � 1, v�
1
� vu

1
. De�ne

�� = maxf� � 1 : v�f 2 �(C;C;D;D;D;C)g:

Since v�
1
� vu

1
, v�

�

1
� vu

1
= vd

1
. By (A.10), v�

�

f 2 [vf (C;C); vf (D;C)]. Since v�
�

f 2 H
2 and

v�
�

f � vd
1
, Lemma A.3 implies that v�

�

f 2 H
4. Combining this observation with (A.9), we

conclude that

v0f = H
4 \ [vf (C;C); vf (D;C)] 2 [vf (C;C); v

��

f ]: (A:11)

By Lemma A.3, v0
1
� vd

1
= 0. De�ne

�00 = maxf� � 1 : �vdf + (1� �)v0f 2 �(D;C;C;C;C;D)g:

Since �00 � 1 and v0
1
� vd

1
,

v00f = �00vdf + (1� �00)v0f 2 fvf : v1 � 0g:

By construction, v00f must be in either [vf (C;C); vf (C;D)] or [vf (C;D); vf (D;C)]. Since

v1 < v1(C;C) < vd
1
= 0 for all (v1; v2; f ) 2 (vf (C;C); vf (C;D)),

v00f =2 (vf (C;C); vf (C;D)):
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Therefore,

v00f 2 [vf (C;D); vf (D;C)]:

By (A.11), vf (D;C) 2 H
4. Since v00f 2 H

4, we conclude that vf (C;D) 2 H
4

. Lemma A.7

implies that player 1 can enforce vdf by a single hyperplane. Q.E.D.

A similar argument applies if the target is on a surface of the average state space. It is

straightforward to show that if in equilibrium one player uses a single hyperplane strategy,

then the other player also uses a single hyperplane strategy. This completes the proof of

Theorem 3.1. Q.E.D.
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