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1. Introduction

In multi-armed bandit models (Robins 1952), an agent choosing from alternatives
with stochastic payoffs (risky arms) faces a trade-off between maximizing the ex-
pected payoff based on what he currently knows about the alternatives, and learning
about the stochastic processes that generate these payoffs by experimenting with dif-
ferent alternatives. The dynamic trade-off between exploitation and experimentation
captured in bandit models has found many applications in economics, ranging from
project selection in industrial research and development (Weizman, 1979; Roberts
and Weizman, 1981), to job search with firm-specific or industry-specific produc-
tivities (Jovanovich, 1979), to monopoly producers learning about market demands
(Rothschild, 1984). More recently, bandit problems have been extended to multi-
agent settings, including general approaches to strategic experimentation (Bolton
and Harris, 1999; Keller, Rady and Cripps, 2005), and applications such as R&D
races (Choi, 1991),1 wage setting (Fellis and Harris, 1996), and price competition
(Bergemann and Valimaki, 1996). In all these models, the agent learns about an
individual risky alternative by trying it; that is, learning occurs only through experi-
menting.

In this paper, we study a simple bandit model where during experimentation
the agent can also engage in a costly dynamic process of information acquisition.
Learning about risky arms during experimentation is modeled here as a pure in-
formation activity, because rewards can only arrive through experimentation. For
example, in the R&D application of bandit problems, while a pharmaceutical firm
has a team of laboratory chemists engaged in a process to develop a new drug, it
may hire scientists to research about the biochemical foundation behind the poten-
tial new drug. A scientific theory will not in itself bring about the new drug, but it
can inform the laboratory chemists in their trial and error process. Similarly, while
a job-seeker goes through applications and interviews with different firms in an
unfamiliar industry, he may be able to acquire information about the industry and
his particular fit with it through word-of-mouth in his social network. The same is
true for modeling consumer demand for an experience good: besides trying out the
good themselves, buyers may be able to obtain useful information about the good
by asking their friends who have positive or negative experience with consuming it.

1See also Reinganum (1981, 1982), Harris and Vickers (1985, 1987), and Malueg and Tsutsui (1997).
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Although it is a pure information activity, learning while experimenting changes
the agent’s belief about the prospects of risky arms and affects the agent’s exper-
imentation. The value of information in our model is thus endogenous, and the
comparison of different information structures—the main objective of this paper—
depends on the current state of the experimentation process (i.e., how optimistic or
pessimistic the agent is about the prospects of risky alternatives). To capture learn-
ing while experimenting, we use as the benchmark a single-agent, single-risky arm
version of the exponential bandits model of Keller, Rady and Cripps (2005). The
risky arm is either good and produces a success at an exponential rate, or bad with
no possibility of success. Learning through experimentation takes a simple form:
starting from a prior belief that the risky arm is good, as the agent continues to
experiment without achieving a success, he becomes increasingly pessimistic, even-
tually abandoning the risky arm when the beliefs drops below a critical threshold.

We consider two opposite information structures in learning while experiment-
ing, both modeled as an exponential processes with uncertain arrival rates. In the
case of positive information, the agent pays to search for conclusive evidence that a
success can indeed be obtained from experimentation. Of course, no such evidence
can be found if the risky arm is actually bad. Moreover, even after the evidence ar-
rives, the agent can achieve a success only by continuing with the risky arm, except
now the arrival is stochastic but no longer uncertain. In the pharmaceutical firm
R&D application, a scientific theory establishing the sound foundation or feasibility
of the new drug may be an example of such information structure. In the case of neg-
ative information, the agent pays to search for conclusive evidence that no success can
be obtained from experimentation. Such evidence arrives at a positive rate when the
risky arm is bad, but it will never arrive in the opposite state. For the pharmaceutical
firm example, negative information acquisition may take the form of doing a toxi-
cological study that demonstrates a fatal flaw in the current approach of developing
the drug, or exploring the possibility of a rival or superior drug. Closer to home, a
researcher trying to prove a theorem may benefit from negative news coming from a
counterexample, and one trying to solve a mathematical problem may benefit from
positive news coming from an existence theorem guaranteeing that a solution exists.
In both these cases, the arrival of positive or negative news provides conclusive ev-
idence that causes the researcher’s belief about the prospect of his research to jump
up or down. These types of information acquisition activities are suitably modeled
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by exponential bandit processes.

The introduction of information acquisition in experimentation enriches the anal-
ysis of optimal experimentation. Without information acquisition, the question is
simply when the agent should quit the risky arm; with it, we ask what factors de-
termine whether and when information acquisition is useful to the agent. Is it best
for the agent to acquire information about the risky arm when he is still optimistic
about achieving a success or when he is already pessimistic? The answer turns
out to depend on whether information is positive or negative. This is because the
type of information affects the nature of the interaction between learning through
experimenting and learning while experimenting.

Positive information reinforces the direct learning through experimenting, be-
cause failure to uncover positive evidence speeds up the downgrading of the agent’s
belief that a success from the risky arm can be achieved. When the agent is opti-
mistic about the risky arm, there is relatively little use in having the positive news,
and since information is costly, it is not optimal for the agent to acquire it. In con-
trast, positive information is more valuable to the decision of whether to quit the
risky arm when the agent is pessimistic, as it can potentially avoid quitting before
achieving success. We show that the benefit of positive information over optimal ex-
perimentation is the highest when the agent is just about to quit, and is lower when
the agent is more optimistic. In a sense, positive information may be interpreted as
a last-ditch effort in trying the risky arm before irrevocably quitting it. Moreover,
the agent optimally quits experimenting at a lower belief when positive information
acquisition is used than when it is not used. Finally, it is never optimal to engage
in both learning and experimentation; that is, optimal learning requires suspension
of experimentation. If learning must be combined with experimentation because the
latter cannot be suspended, then the agent will be forced to forgo such combined
learning even though the belief justifies using “pure” learning as the last resort.

Unlike positive information, negative information counters learning through ex-
perimenting. Failure to uncover negative evidence drives up the agent’s belief. When
the agent is already so pessimistic that he is about to abandon the risky arm there
is little use in having the negative news, but when the agent is relatively optimistic
negative information acquisition can be deployed as an insurance strategy to avoid
potentially waiting too long to quit. Indeed, we show that the benefit of negative
information over optimal experimentation is concave in the agent’s belief, so the op-
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timal use of negative information acquisition is an interval of intermediate beliefs.
Since the agent’s belief goes up when he chooses negative information acquisition
and there is no negative news, while it goes down when he chooses experimentation
but fails to achieve success, the switching point between the two strategies is char-
acterized by a “perpetual learning policy” of alternating between the two in such a
way that the belief becomes stationary, until either he achieves a success from the
risky arm or quits upon the arrival of negative news. As is the case with positive in-
formation acquisition, optimal negative information acquisition requires suspension
of experimentation. If negative information acquisition must be combined with ex-
perimentation, perpetual learning ceases to be a feature of optimality when negative
news arrives at a lower rate than success through experimentation.

In recent independent work, Che and Mierendorff (2017) study the problem of
an agent choosing between two possible actions with uncertain payoffs, who can
delay the decision to acquire more information about the state, by allocating a fixed
budget of “attention” to available information structures. Information acquisition
is the only source of learning in their model. In our model, the agent must choose
whether to continue with the risky alternative or abandon it. Experimenting with
the risky arm is in itself informative, and this learning is augmented by the agent
acquiring additional information at a cost. While the models are distinct, some of
the insights that emerge from their analysis are similar to ours. Che and Mierendorff
(2017) show that as an agent’s belief gets closer to the point where he would stop
to take one of the alternatives, this agent pursues “contradictory” news that would
convince him to choose the other alternative. The logic of this result is the same
as that of an agent in our model who chooses positive information acquisition as a
last-ditch effort to resurrect experimentation before he abandons it.

Another related work is Moscarini and Smith (2001), who study a problem of
an agent choosing between two alternatives. In their paper, learning is modeled as
a continuous diffusion process, and they show that the agent increases the level of
experimentation (adopts a more costly but more accurate diffusion process) as his
belief gets closer to the two stopping thresholds. Although their conclusion appears
to be similar to ours in the case of positive learning (the agent chooses positive infor-
mation acquisition before he is about to quit), the logic behind their result is differ-
ent. With a diffusion learning process, the agent’s belief never jumps; and Moscarini
and Smith (2001) show that the marginal benefit of this type of experimentation is
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increasing in the value of the problem, which is highest prior to stopping and act-
ing. In our paper, learning is the search for conclusive evidence about the state. The
benefit of information in our paper derives from the convexity of the value function.
Even though the value is lowest when the agent is about to quit, he has the greatest
incentive to acquire positive information at this point for the chance that positive
news may cause the value to jump up as the belief jumps to 1.

2. Direct Learning in Experimentation

Consider the following continuous-time bandit model. There is a single arm that
yields uncertain returns to an agent. There are two states of the world. In the good
state G, the risky arm yields a “success” with a total prize π at a random time
according to the exponential distribution with parameter λ > 0 so long as the agent
experiments with it. In the bad state B, the arrival rate of success is 0. The initial
belief that the state is G is denoted as γ0, and is assumed to be strictly between 0
and 1. Experimenting with the risky arm, or choosing X, has a flow cost c > 0. The
agent stops experimentation and the control problem ends once he gets the prize π.
For simplicity we assume that the agent does not discount.

There is a safe arm, with an arrival rate of “success” equal to 1 in both states.
The prize upon “success” from the safe arm is normalized to 0, and the flow cost
of choosing the safe arm is also 0. Choosing the safe arm, or choosing Q, is in-
terpreted as quitting experimentation, although formally the control problem does
not end until “success” arrives from the safe arm. We make the assumption that
experimenting with the risky arm is worthwhile if the state is known to be G:

π > c/λ. (1)

Since 1/λ is the expected duration of achieving success through the risky arm condi-
tional on state G, c/λ is the conditional expected cost of success. Of course, quitting
is optimal when the state is known to be B.

In addition to experimenting with the risky arm, we allow the agent to engage
in two types of “pure” information acquisition activities. At any point in time,
instead of choosing X or Q, the agent may be allowed to choose to conduct “positive”
information acquisition (P). If the agent chooses P for a small interval of time dt,
conclusive news about the true state arrives with probability αPdt for some αP > 0
in state G, and no news arrives if the state is B. The flow cost of positive information
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acquisition is kP > 0. Alternatively, the agent may be allowed to conduct “negative”
information acquisition (N). If he chooses N for a small interval of time dt, news
that confirms the bad state arrives with probability αNdt for some αN > 0 if the state
is truly B, and no news arrives if the state is G. The flow cost of negative information
acquisition is kN > 0.

There is no direct payoff from information acquisition, although the optimal pol-
icy is trivial after the agent receives conclusive news about the state. In positive
information acquisition, after learning that the state is G, the agent will experiment
with the risky arm until a success, which by assumption (1) is optimal for the agent.
In negative information acquisition, after learning that the state is B, the agent will
optimally quit. In extensions after the main analysis, we consider the case where
the agent can choose either positive or negative information acquisition together
with experimenting (Sections 3.4 and 4.4), and the case where the agent can acquire
positive and negative information independently or jointly (Section 5.2).

If the agent can only choose between experimenting and quitting, our model is a
simplified version of the exponential bandit problem introduced by Keller, Rady and
Cripps (2005). Exponential bandit problems have become a major workhorse in dy-
namic game-theoretic models of learning since their contribution, because the poten-
tially intractable problem of computing the Gittins index boils down to determining
the optimal stopping time. Our model of information acquisition in experimentation
may be thought of as a multi-arm bandit problem with correlated arms, where the
agent is choosing between two risky arms—corresponding to experimentation only
and pure information acquisition—and a safe option of quitting. The new risky arm
is correlated with the original one, unlike in the standard multi-arm bandit problem
solved by Gittins (1979), because the potential payoffs from them are determined by
the same underlying state. Our paper contributes to the small economics literature
on multi-armed bandit with correlated arms (Camargo, 2007; Klein and Rady, 2011).

3. Positive Information Acquisition

In this section, at any moment t > 0, the agent makes a choice among Q, X and
P for an infinitesimal time interval [t, t + dt). The formal analysis allows the agent
to mix between these three choices. We let σ(t) = (σQ(t), σX(t), σP(t)) to be the
(non-negative) intensities for which these three choices are taken at time t, with
σQ(t) + σX(t) + σP(t) = 1. However we show in the proof of Proposition 1 below
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that the optimal control involves no mixing. Therefore, we sometimes abuse notation
by also writing σ(t) ∈ {Q, X, P} for the three pure-strategy choices. The entire
closed-loop strategy is denoted as {σ(t)}.

The optimal control problem ends when success arrives from the risky arm (the
time of this event is denoted TX) or from the safe arm (the time of this event is
denoted TQ). If positive news arrives (the time of this event is denoted TP), the
belief that the state is G jumps to 1. In this event, assumption (1) ensures that it is
optimal to keep choosing X until success arrives. The payoff from this continuation
policy is π − c/λ. Even though the control problem does not literally stop when
positive news arrives, we use T = min{TX, TP, TQ} to denote the “stopping time” at
which either success arrives from the safe or risky arm, or positive news arrives from
the information acquisition process, whichever is earlier. We can write the agent’s
problem in positive information acquisition as choosing {σ(t)} to maximize:

E

[
π1(T = TX) + (π − c/λ)1(T = TP)−

∫ T

0
(σX(t)c + σP(t)kP) dt

]
, (2)

where the expectation is taken with respect to probability distribution of the stop-
ping time τ given the agent’s initial belief γ0 and the strategy {σ(t)}:

Pr[T > t] = γ0e−
∫ t

0 (σX(τ)λ+σP(τ)αP+σQ(τ))dτ + (1− γ0)e−
∫ t

0 σQ(τ)dτ.

Starting with any initial belief γ0, a given strategy {σ(t)} determines the evolu-
tion of the agent’s belief. Fix any t > 0. Denote as γ(t) the agent’s belief that the
state is G at time t, given that the decision problem is still on-going, i.e., prior to
t success has not yet occurred from choosing X, and conclusive news has not yet
arrived from choosing P. If σ(t) = Q, there is no belief updating. If σ(t) = X, the
belief γ goes down at the rate of λ as the agent chooses X and no success occurs.
Bayes’ rule requires that the updated belief γ(t) conditional on no success satisfies:

dγ(t)
dt

= −γ(t)(1− γ(t))λ. (3)

If σ(t) = P, the belief evolution conditional on no news satisfies:

dγ(t)
dt

= −γ(t)(1− γ(t))αP. (4)

Of course, the belief jumps to 1 if the risky arm yields success or if positive news
arrives.
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3.1. No direct learning

Before we characterize the solution to the problem of positive information acquisi-
tion (2), we illustrate the main intuition with a heuristic argument. To do so, we first
consider the benchmark case where P is not available to the agent. The solution is a
special case of our main result in this section, when the cost of positive information
acquisition is prohibitively high.

Let V(γ) be the value function for the control problem (2), and assume that V(·)
is differentiable (a property which will be established in the formal proof of our
main result). In the region of beliefs where X is optimal, the principle of dynamic
programming gives, for small dt:

V(γ) = −cdt + γλπdt + (1− γλdt)
(

V(γ) + V′(γ)
dγ

dt
dt
)

.

Using equation (3) for dγ/dt, we obtain the differential equation for the value func-
tion V(γ):

γ(1− γ)λV′(γ) = −c + γλ (π −V(γ)) . (5)

The right-hand-side of (5) is the expected capital gain from success minus the flow
cost of choosing X. Since quitting gives a payoff of 0, the optimal policy is given
by a cutoff γQX such that the agent chooses Q for γ ≤ γQX and X otherwise. The
value of γQX can be found by value-matching (V′(γQX) = 0) and smooth-pasting
(V(γQX) = 0). This yields

γQX =
c

λπ
,

which is strictly between 0 and 1 by assumption (1). The value function V(γ) is
0 for γ ≤ γQX, and is the solution to the differential equation (5) with boundary
condition V(γQX) = 0 for γ ≥ γQX. For future reference, we denote this value
function as UX(γ).

Consider the change in expected payoff to a agent who gains access to free pos-
itive information for a small time interval of length dt, before going back to his op-
timal experimentation policy in the benchmark case. Conditional on G, the state is
revealed to the agent with probability αPdt, after which the agent optimally chooses
X until success, with expected payoff π − c/λ. Absent the arrival of positive news,
the new updated belief γ(t + dt) is given by (4). The change in the agent’s payoff is
thus

γαP(π − c/λ)dt + (1− γαPdt)UX(γ(t + dt))−UX(γ).
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For a first-order approximation of UX(γ(t + dt)) in the above expression, we use (5)
for γ > γQX, and use UX(γ) = 0 and U′X(γ) = 0 for γ ≤ γQX. The resulting expres-
sion is proportional to dt and to αP, so we define the benefit of positive information,
BP(γ), as the time rate of payoff change per unit of news arrival rate:

BP(γ) =

(1− γ)c/λ if γ > γQX,

γ(π − c/λ) if γ ≤ γQX.

If the agent is engaged in experimenting (i.e., γ > γQX), the benefit of positive in-
formation is decreasing in γ. The benefit is lower when the agent is more optimistic,
because of a smaller change in the agent’s belief when news from positive informa-
tion acquisition arrives (from γ to 1). If the agent is not engaged in experimenting
(i.e., γ ≤ γQX), the benefit of positive information is increasing in γ, because it is
simply the probability of receiving good news about the state, times the expected
payoff from optimally experimenting forever in state G. Thus, BP(γ) is maximized
when the belief is γQX and the agent is just ready to quit. Define

B∗P ≡ max
γ

BP(γ).

As kP/αP is the expected cost of verifying the state conditional on G, we use it as the
(inverse) measure of the efficiency of positive information acquisition. We show in the
next subsection that if kP/αP < B∗P, then P is optimal for some belief. Otherwise, the
value function associated with the maximization problem (2) is identical to UX(γ).

The effects of the c/λ on the benefit of positive information depends on the
current belief of the agent. When c/λ is higher, i.e., experimentation is less efficient,
there are three forces acting on BP(γ): (i) experimentation becomes less informative
than direct positive information acquisition; (ii) the agent quits earlier; and (iii) the
payoff from experimentation is lower even if the state is known to be G. When
γ ≤ γQX, the first two forces are irrelevant as the agent chooses Q for these beliefs. In
this case, a less efficient experimentation technology lowers the benefit from positive
information through the third force. When γ > γQX, the agent adjusts the threshold
for quitting in such a way to balance the second and third force, leaving the first
effect to dominate. In this case, a less efficient experimentation technology raises the
benefit from positive information.
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3.2. Optimal learning

Consider now the possibility of learning about the state. In the region of beliefs
where P is optimal, the principle of dynamic programming gives, for small dt:

V(γ) = −kPdt + γαP(π − c/λ)dt + (1− γλdt)
(

V(γ) + V′(γ)
dγ

dt
dt
)

.

Using equation (4) for dγ/dt, we obtain the differential equation for the value func-
tion V(γ):

γ(1− γ)αPV′(γ) = −kP + γαP (π − c/λ−V(γ)) , (6)

where the right-hand-side is the expected capital gain from news arrival minus the
flow cost of choosing P. Combining equations (5) for the option of choosing X and
(6) for the options of P, together with the option of choosing Q (with expected capital
gain minus flow cost equal to −V(γ)), the Hamilton-Jacobi-Bellman (HJB) equation
for the value function V(·) corresponding to problem (2) is:

0 =max
{
−V(γ),−c + γλ(π −V(γ))− γ(1− γ)λV′(γ),

−kP + γαP(π − c/λ−V(γ))− γ(1− γ)αPV′(γ)
}

. (7)

The first term in the maximum operator on the right-hand-side represents the option
of Q, the second term represents the option of X, and the third term P. For simplicity
of exposition, we assumes that the agent chooses among the pure strategies Q, X and
P to obtain the HJB equation (7). Our main result (Proposition 1) allows the agent
to choose from general strategies of the form (σQ(t), σX(t), σP(t)). Equation (7) is
without loss of generality, as we show that the optimal choice at each point in time
is always a corner solution.

For γ ∈ (0, 1), define DX(γ) and DP(γ) such that

γ(1− γ)λDX(γ) ≡ −c + γλ (π −V(γ)) ,

γ(1− γ)αPDP(γ) ≡ −kP + γαP (π − c/λ−V(γ)) .

The above are essentially the same as (5) and (6). The function DX(γ) is simply
V′(γ) when X is optimal. Similarly, DP(γ) is equal to V′(γ) when P is optimal. We
can then rewrite (7) as

0 = max{−V(γ), γ(1− γ)λ(DX(γ)−V′(γ)), γ(1− γ)αP(DP(γ)−V′(γ))}. (8)
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By a standard verification theorem (e.g., Oksendal and Sulem, 2005, Theorem 9.8), V
is the value function for problem (2) if it is continuously differentiable and satisfies
the HJB equation (8).

To find a candidate solution V for the HJB equation, observe from (8) that at a
given belief γ, (i) if X is optimal, then DX(γ) = V′(γ) ≥ DP(γ); and (ii) if P is opti-
mal, then DP(γ) = V′(γ) ≥ DX(γ). For a conjecture of a continuously differentiable
V, we have that DX(γ̂) = DP(γ̂) at any belief γ̂ where the optimal policy changes
between X to P. Using the definitions of DX(γ) and DP(γ), this crossing-point,
denoted γPX, is

γPX = 1− kP/αP

c/λ
. (9)

Furthermore, DP(γ) ≥ DX(γ) if and only if γ ≤ γPX. We therefore conjecture an
optimal policy described in case (ii) of Figure 1. At very high belief, the agent is
confident about state G and chooses X. As success does not arrive and the agent
becomes less optimistic, he switches to choose P when the belief reaches γPX. As no
positive news arrives, he becomes more pessimistic and eventually chooses Q when
the belief reaches γQP, where

γQP =
kP/αP

π − c/λ
(10)

is determined by DP(γQP) = 0 and V(γQP) = 0. In Proposition 1 below, we show
that such policy is optimal when positive information acquisition is relatively effi-
cient. When P is relatively inefficient, it is never used and the optimal policy is the
same as that described in Section 3.1, corresponding to case (i) of Figure 1.

Proposition 1. Consider the model of positive information acquisition.

(i) If kP/αP ≥ B∗P, then the optimal policy is Q when γ ≤ γQX, and X when γ > γQX;
(ii) if kP/αP < B∗P, then the optimal policy is Q when γ ≤ γQP, P when γ ∈ (γQP, γPX],

and X when γ > γPX.

In case (i) of Proposition 1, information acquisition is so inefficient that the
agent’s optimal policy is the same as when positive information is unavailable. The
quitting belief is γQX. When information acquisition is sufficiently efficient relative
to the maximum benefit, we have case (ii) and positive information acquisition be-
comes optimal for some beliefs. It is easy to verify that γQP < γQX in this case, and
so the use of P raises the value function and enables the agent to quit at a more
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Figure 1. Optimal policy in the positive information acquisition model. The direction of the arrows
indicate how the belief evolves when the risky arm brings no success and information acquisition
brings no news.

pessimistic belief about the state. Furthermore, γQX < γPX in this case, implying
that the positive information acquisition region contains the belief that maximizes
BP(γ). As we have seen from the discussion of the benefit of positive information,
positive information acquisition is used as a last-ditch effort before abandoning the
risky arm permanently. Consistent with the fact that BP(γ) decreases in γ whenever
the agent experiments with the risky arm, the agent optimally refrains from positive
information acquisition if he is sufficiently optimistic about the state.

The result that positive information acquisition is optimally chosen when the
agent is relatively pessimistic about state G holds despite the fact that the agent
expects that it is unlike to actually find good news when his belief is low.2 The main
reason is that information is useful only to the extent that it can potentially alter an
agent’s decision. When the agent is about to quit, positive information acquisition
has the greatest potential to correct what would otherwise be a wrong decision,
which is why the benefit of positive information is greatest at the quitting point.
Calvert (1985) and Suen (2004) make a similar point in the context of static decision
making, but the same logic extends to our dynamic learning model.

2Observe that γQP is strictly greater than 0 as long as kP/αN is positive. The agent never chooses
positive information acquisition when his belief is very low, because he does not expect to find any
news in that case.
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3.3. Optimal use of direct learning

It is straightforward to see from the formulas for γPX and γQP (equations (9) and
(10)) that a more efficient technology of positive learning (i.e., a decrease in kP/αP)
expands the optimal use of direct learning, i.e., the range of beliefs (γQP, γPX] for which
P is chosen in case (ii) of Proposition 1. Nevertheless, for any kP/αP > 0, the agent
optimally chooses experimentation instead of direct learning if the belief about state
G is sufficiently close to 1. Although learning is cheap and the chance of finding
good news is high, good news does not alter the agent’s decision to engage the risky
arm when he is very optimistic. The agent therefore optimally chooses X, and delays
exercising the option to use P until his belief gets lower if success does not arrive.

An increase in the prize π from success raises B∗P and hence makes it more likely
that P is chosen under the optimal policy. Moreover, γQP decreases in π while
γPX does not depend on π. Recall that γQP < γQX in case (ii) of Proposition 1.
This means that an increase in the reward increases the optimal use of positive
information acquisition by expanding the region of beliefs for which P is used as the
last resort to resurrect risky experimentation. On the other hand, since the agent still
has to engage in experimentation if his belief jumps to 1 upon the arrival of good
news, the increase in π dose not affect the choice between direct learning about the
state and risky experimentation when he is sufficiently optimistic.

Finally, it is straightforward to incorporate discounting into the optimal control
problem (2). If the discount rate is ρ > 0, the HJB equation becomes:

0 = max{−V(γ)− ρV(γ), γ(1− γ)λ(DX(γ)−V′(γ)), γ(1− γ)αP(DP(γ)−V′(γ))},

where

γ(1− γ)λDX(γ) ≡ −c + γλ (π −V(γ))− ρV(γ),

γ(1− γ)αPDP(γ) ≡ −kP + γαP (V(1)−V(γ))− ρV(γ).

With discounting, we have V(1) = (λπ − c)/(λ + ρ), which decreases with ρ. Since
the agent still has to pursue experimentation and wait for success to arrive to obtain
the reward even if he knows that the state is good, discounting reduced the cap-
ital gain resulting from obtaining good news. This reduces the value of choosing
P relative to the other two options. When positive information acquisition is suffi-
ciently efficient so that P is optimally used, the quitting belief γQP is determined by
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Figure 2. In panels (a) and (b), P is optimally used in the positive information acquisition model
when γ ∈ (γQP, γPX]. Greater discounting reduces the region of beliefs for which P is optimally
used. Panels (c) and (d) refer to the negative information acquisition model. In panel (c) N is
chosen when γ ∈ (γXN , γNX]; in panel (d) N is chosen when γ ∈ (γQN , γNX]. In both panels,
greater discounting reduces the region of beliefs for which N is optimally used. The values of other
parameters used in this illustration are: π = 10, and λ = c = kP = kN = 1.

DP(γ) = 0 and V(γ) = 0. This gives γQP = kP/(αPV(1)), so discounting causes
the agent to quit earlier. Letting UP(γ) be the solution to the differential equation
DP(γ) = V′(γ), with boundary condition V(γQP) = 0, the upper boundary of the
optimal use of positive information is determined by the belief γPX that satisfies
DP(γ) = DX(γ) at V(γ) = UP(γ). When λ = αP, for any UP an increase in ρ has the
same effect on DX and DP apart from reducing V(1) in DP, so γPX decreases. In gen-
eral, however, the equation for γPX depends on UP and does not admit an explicit
solution, but a numerical analysis confirms that γPX decreases in ρ. In panels (a)
and (b) of Figure 2, we illustrate that the region of positive information acquisition,
(γQP, γPX], shrinks when the agent becomes more impatient.

14



3.4. Combined learning

We have assumed that the agent cannot choose positive information acquisition and
experimentation at the same time. Recall that positive information acquisition is a
pure information activity, and even after it yields conclusive news about the state,
the agent still has to incur the cost of experimentation in order to deliver success.
A natural question is then whether it would be optimal for the agent to combine
positive information acquisition with experimentation.

To address the above question, we assume that in addition to Q, X and P, the
agent can also choose X and P together as a separate option. Denote this choice as
P†. When the agent makes this choice, the belief in the absence of either success or
positive news goes down at the rate of λ + αP. Defining DP†(γ) according to

γ(1− γ)(λ + αP)DP†(γ) ≡ −c− kP + γ(λπ + αP(π − c/λ))− γ(λ + αP)V(γ),

we can write the HJB equation in this case as

0 = max{−V(γ), γ(1− γ)λ(DX(γ)−V′(γ)), γ(1− γ)αP(DP(γ)−V′(γ)),

γ(1− γ)(λ + αP)(DP†(γ)−V′(γ))}. (11)

Proposition 2. Suppose σ(t) ∈ {Q, X, P, P†}. Under the optimal policy, there is no inter-
val of beliefs such that σ(t) = P† when γ(t) belongs to that interval.

The key to Proposition 2 is that DP† is just a linear combination of DP and DX.
Whenever P is strictly preferred to X, P is also strictly preferred to P†. Whenever
X is strictly preferred to P, X is also strictly preferred to P†. Intuitively, given the
linearity inherent in the optimization problem, combining P with X cannot improve
on both of them. An immediate implication of Proposition 2 is that optimal positive
information acquisition requires the agent to suspend experimentation.

The above result shows that adding the option of P† does not change optimal
information acquisition when P is feasible. However, in some applications of our
model P may not be feasible unless it is combined with X.3 The question is then
whether the optimal policy with regards to {Q, X, P†} will be different from the one

3In the motivating example of R&D mentioned in the introduction, for legal reasons or industrial
relations, the firm may not be able to suspend product development by its engineers in order to bring
in industry or academic scientists to engage in background research about the product.
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with regards to {Q, X, P}. It is obvious from the discussion of Proposition 2 that P†
will never be chosen when kP/αP ≥ B∗P, and so the optimal policy remains the same
as in case (i) of Proposition 1. When kP/αB < B∗P, the optimal policy will be different
but has a similar structure as in case (ii) of Proposition 1—choose Q when γ ≤ γQP†;
choose P† when γ ∈ (γQP†, γP†X]; and choose X when γ > γP†X.

Once again, since DP† is a linear combination of DP and DX, the marginal benefit
of P† over X is the same as P over X, implying that γP†X = γPX. However, the
marginal benefit of P† over Q is smaller than that of P over X. Formally, since
γQP < γPX and DX(γQP) < DP(γQP) = 0 when kP/αP < B∗P, we have

(λ + αP)DP†(γQP) = λDX(γQP) + αPDP(γQP) < 0.

This implies that γQP† > γQP, meaning that the agent would quit strictly before the
belief reaches γQP if only {Q, X, P†} is available. Put differently, at belief γQP, the
probability of finding news that confirms state G is too low to justify the cost if posi-
tive information acquisition has to be accompanied by experimenting with the risky
arm. However, pure positive information acquisition can still be justified despite the
long odds because it is relatively cheap without experimentation. This result is con-
sistent with the earlier claim that optimal positive information acquisition requires
the agent to suspend experimentation.

4. Negative Information Acquisition

In this section, at any moment t > 0, the agent chooses σ(t) = (σQ, σX, σN) in the
unit simplex for an infinitesimal time interval [t, t + dt). We focus on pure strategy
choice in the exposition, and sometimes write σ(t) ∈ {Q, X, N}, although the formal
result (Proposition 3 below) allows mixing between these strategies.

When negative information arrives (the time of this event is denoted TN), the
belief jumps to 0. The optimal continuation policy is to choose Q until success
arrives from the safe arm (with a payoff of 0). Let T = min{TX, TN, TQ} be the
“stopping time,” i.e., the time of arrival of success from the risky arm of safe arm, or
the time of arrival of negative news, whichever is earlier. We can write the agent’s
optimal control problem in negative information acquisition as choosing {σ(t)} to
maximize

E

[
π1(T = TX)−

∫ T

0
(σX(t)c + σN(t)kN) dt

]
, (12)
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where the expectation is taken with respect to the probability distribution of the
stopping time τ given the agent’s initial belief γ0 and the strategy {σ(t)}:

Pr[T > t] = γ0e−
∫ t

0 (σX(τ)λ+σQ(τ))dt + (1− γ0)e−
∫ t

0 (σN(τ)αN+σQ(τ))dτ.

The belief updating after the agent chooses Q or X is the same as in Section 3.
If σ(t) = N, the updated belief γ(t) conditional on the absence of negative news
satisfies:

dγ(t)
dt

= γ(t)(1− γ(t))αN. (13)

Thus, in contrast to experimentation and positive information acquisition, the belief
that the state is G goes up at the rate of αN as the agent chooses N and no negative
news arrives. This sign change is critical to the contrasting results we obtain below
for negative information acquisition.

For γ ∈ (0, 1), define DN(γ) according to

−γ(1− γ)αNDN(γ) ≡ −kN − (1− γ)αNV(γ).

The right-hand-side of the above is the expected capital loss from arrival of negative
news minus the flow cost of negative information acquisition. The function DN(γ)

is simply V′(γ) when N is optimal. Whenever the derivative of the value function
exists, the HJB equation for problem (12) is given by

0 = max
{
−V(γ), γ(1− γ)λ(DX(γ)−V′(γ)), γ(1− γ)αN(V′(γ)− DN(γ))

}
. (14)

The first term in the maximum operator on the right-hand-side represents the option
of Q, the second term represents the option of X, and the third term N.

4.1. Benefit of learning

As in positive information acquisition, we first derive an expression for the benefit of
negative information, BN(γ). Consider the change in the expected payoff to the agent
who gains access to free negative information for a small time interval of length
dt before going back to his optimal experimentation policy in the benchmark of no
direct learning given in Section 3.1. Conditional on B, with probability αNdt the
agent learns the state and quits. In the absence of the news, the updated belief
follows (13). The change in the payoff is given by:

(1− (1− γ)αNdt)UX(γ(t + dt))−UX(γ).
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We use equation (5) for a first-order approximation of UX(γ(t + dt)). The resulting
expression for the payoff change is again proportional to dt and to αN, so we define
BN(γ) to be the time rate of payoff change per unit of news arrival rate, given by

BN(γ) =

γπ − c/λ−UX(γ) if γ > γQX,

0 if γ ≤ γQX.

Since UX is convex, the benefit of negative information is concave for γ > γQX.
This means that negative information is particularly valuable when the agent has
intermediate beliefs about the state. Define

B∗N ≡ max
γ

BN(γ).

Correspondingly, define γ∗N ≡ arg maxγ BN(γ), which is uniquely determined by
the first order condition, U′X(γ

∗
N) = π. Unlike positive information, the benefit of

negative information is 0 when the agent is about to quit, because learning that
the state is B does not change the agent’s decision. As the agent becomes more
optimistic, the benefit initially increases, but it eventually decreases because negative
information acquisition is unlikely to generate any news when the state is likely to
be G. Thus, the benefit of negative information stems from its use as an insurance
strategy to avoid wasteful experimentation when the agent is still optimistic about
the risky arm but the state is actually B.

The benefit of negative information BN(γ) can be related to the benefit of positive
information BP(γ) defined earlier. Observe that

BP(γ) + BN(γ) = γUX(1) + (1− γ)UX(0)−UX(γ).

Thus, the total benefit of positive and negative information is equal to the value of
an experiment that reveals the true state in the benchmark model of Section 3.1 with
experimentation only. See Figure 3 for an illustration. Because UX(1) = π − c/λ

and UX(γQX) = 0, the term γπ − c/λ in the definition of BN(γ) is shown by the
chord between UX(1) and UX(γQX) in Figure 3. The distance between this chord
and UX(γ) is the benefit of negative information BN(γ), and the distance between
this chord and the value of fully-revealing experiment γUX(1) + (1− γ)UX(0) is the
benefit of positive information BP(γ).
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Figure 3. The benefit of negative information is the distance between the dashed line and UX(γ). This
benefit is maximized at γ∗N . The benefit of positive information is the distance between the dashed line
and the dotted line. This benefit is maximized at γQX.

4.2. Perpetual learning

In this subsection, we provide a characterization of the optimal policy under negative
information acquisition (Proposition 3 below). This is achieved by first using the HJB
equation (14) as our guide to conjecture a candidate policy. We use kN/αN as the
(inverse) measure of the efficiency of negative information acquisition, as it represents
the expected cost of verifying the state conditional on B. Similar to the case of
positive information acquisition, the definition of BN(γ) implies that N is optimal
for some beliefs when kN/αN < B∗N.

Naturally, we conjecture that X is optimal when the agent’s belief γ is sufficiently
high. To identify the highest switching point between N and X, we make use of
the fact that belief updating operates in opposite directions under N and under X.
In particular, because the belief goes up if the agent chooses N and no bad news
arrives, while the belief goes down if the agent chooses X and no success arrives,
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by alternating between choosing N for an interval of length λdt and choosing X for
a small interval αNdt, the agent keeps the belief stationary. This corresponds to the
policy: σN = λ/(αN + λ), σX = αN/(αN + λ), and σQ = 0. We call this a perpetual
learning policy, and denote the payoff from such policy US(γ). It satisfies:

US(γ) = −cαNdt− kNλdt + γλπαNdt + (1− γλαNdt− (1− γ)λαNdt)US(γ),

and hence
US(γ) = γπ − c/λ− kN/αN.

The payoff US(γ) is linear in γ, and is shown in Figure 4.4 The switching point
between N and X, denoted as γNX, is an absorbing point by construction. We have

V(γNX) = US(γNX),

which is a value-matching condition. Furthermore, since the perpetual policy is
feasible, optimality of N just below γNX implies that V(γ) ≥ US(γ) for γ slightly
below γNX. Similarly, V(γ) ≥ US(γ) for γ slightly above γNX. Together they imply

lim
γ↑γNX

DN(γ) ≤ US
′(γ) = π ≤ lim

γ↓γNX
DX(γ).

The HJB equation (14), however, requires that DN(γ) ≥ V′(γ) ≥ DX(γ) for γ in the
neighborhood of γNX. Thus, we must have

DN(γNX) = π = DX(γNX),

implying smooth pasting at the absorbing point. Together with the value-matching
condition at γNX, we can solve for γNX:

γNX =
c/λ

kN/αN + c/λ
. (15)

This is highest value of γ for which N is optimal in the conjectured policy. Value
matching and smooth pasting at the absorbing point γNX are illustrated in Figure 4.

4The expression can be easily understood after noting that, under the perpetual learning policy,
the expected duration for news arrival in state B is the same as the expected duration for the arrival
of success in state G, both given by 1/(αNλ). Thus the expected cost to the agent is just the flow cost
of experimentation and information acquisition (kNλ + cαN) times the state-independent expected
duration 1/(αNλ).
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Figure 4. The dashed line is the payoff US(γ) from the perpetual learning policy. The value function
is equal to UX for γ ∈ [0, γXN ] and to UN for γ ∈ (γXN , γNX]. It is tangent to US at the absorbing
point γNX, and has a convex kink at the tipping point γXN .

For the lowest value of γ for which N is optimal, we conjecture that it is deter-
mined by value matching alone. Let UN(γ) solve the differential equation:

γ(1− γ)U′N(γ) = kN/αN + (1− γ)UN(γ), (16)

with boundary condition UN(γNX) = US(γNX). There can be only one intersection
between UN and UX below γNX: at γXN such that UX(γXN) = UN(γXN), we have5

γXN(1− γXN)(U′N(γXN)−U′X(γXN)) = UN(γXN)−US(γXN) > 0,

where the inequality follows because UN is strictly convex while US is linear, and the
two functions are tangent to each another at γNX. As the switching point between
X and N, the intersection γXN is a tipping point, because the belief goes up for
γ > γXN while N is used and it goes down for γ < γXN while X is used. The value
function, given by UX(γ) for γ ≤ γXN and UN(γ) for γ ∈ (γXN, γNX], does not
satisfy smooth pasting at the tipping point, as it kinks “up.” See Figure 4.

5The expression below assumes that γXN > γQX ; the intersection is the switching point between
Q and N, and we have a convex kink at the switching point trivially.
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Figure 5. Optimal policy under negative information. The direction of the arrows indicate how the
belief evolves when the risky arm brings no success and information acquisition brings no news. In
both case (ii) and case (iii), the belief at γNX is an absorbing point. The belief at γXN in case (ii) and
the belief at γQN in case (iii) are tipping point.

Proposition 3 below provides the characterization of the unique optimal policy
in the negative information acquisition model. The proof involves constructing the
value function V(γ) using the candidate policy and show that it satisfies the HJB
equation (14). The resulting V is not differentiable at a tipping point, but since it has
a convex kink, we show that it is a viscosity solution to (14), and thus corresponds
to the solution to the original problem (12) (see, e.g., Oksendal and Sulem, 2005).

Proposition 3. Consider the model of negative information acquisition. There is a unique
U∗N ∈ (0, B∗N) such that

(i) if kN/αN ≥ B∗N, the optimal policy is Q when γ ≤ γQX, and X when γ > γQX;
(ii) if kN/αN ∈ (U∗N, B∗N), then there exists γXN such that the optimal policy is Q when

γ ≤ γQX, X when γ ∈ (γQX, γXN] and γ ≥ γNX, and N when γ ∈ (γXN, γNX];
(iii) if kN/αN ≤ U∗N, then there exists γQN < γQX such that the optimal policy is Q when

γ ≤ γQN, N when γ ∈ (γQN, γNX], and X when γ ≥ γNX.
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Figure 5 illustrates the three cases of the optimal policy. Due to the inefficiency of
negative information acquisition, in case (i) the optimal policy is the same as when N
is unavailable, and is identical to that for the benchmark model with experimentation
only. When negative information acquisition is sufficiently efficient relative to the
maximum benefit of information B∗N, it becomes optimal to choose N for some beliefs
as the payoff function US(γ) from the perpetual policy rises above the value function
UX(γ) in case (i). In both case (ii) and case (iii) of Proposition 3, the region of beliefs
where N is optimally chosen contains γ∗N, the belief that maximizes BN(γ).6 As we
have seen from the discussion of the benefit of information, negative information
acquisition is used as an insurance strategy to avoid unnecessary experimentation.
This is achieved by replacing X with N for an interval of beliefs around γ∗N.

In case (ii) of Proposition 3, the value function is strictly higher than UX(γ)

for γ in the negative information acquisition region, (γXN, γNX], while X is chosen
for γ < γXN. In case (iii), when negative information acquisition is very efficient,
the value function is strictly higher than UX(γ) whenever the latter is positive. In
this case, the agent chooses N at a belief just higher than the quitting belief γQN.
However, negative information should not be interpreted as a last-ditch effort before
abandoning the risky arm. The agent quits immediately if the starting belief is just
below γQN; above γQN, negative information acquisition drives the agent’s belief up
to γNX (unless bad news is found), at which point the agent optimally adopts the
perpetual learning policy, and never quits until either the state is revealed or success
arrives from the risky arm.

4.3. Optimal use of negative information

By Proposition 3, the optimal use of negative information, i.e., the region of beliefs
for which N is optimally chosen, is an interval. It is given by (γXN, γNX] in case (ii),
and (γQN, γNX] in case (iii).

It can be readily observed from equation (15) that γNX increases when kN/αN

falls. Moreover, because a fall in kN/αN raises UN(γ) but leaves UX(γ) unchanged,
the intersection of these curves (i.e., γXN or γQN, depending on whether case (ii) or

6By construction, UX is tangent to US at γ∗N = γNX when kN/αN = B∗N . When kN/αN decreases,
we have γNX > γ∗N in both case (ii) and (iii). At the same time, we have γXN < γ∗N in case (ii)
because U′X(γXN) < U′N(γXN) < U′N(γNX) = π = U′X(γ

∗
N), and γQN < γ∗N in case (iii) because

U′X(γQN) = 0 < π = U′X(γ
∗
N).
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(iii) applies) shifts to the left. Thus, a more efficient technology of negative learning
expands the range of beliefs for which N is optimally used. But even though negative
information acquisition may be very efficient, as long as kN/αN is positive, the agent
optimally chooses X instead of N when his belief about state G is sufficiently close
to 1. The reason is not that negative news would not change his decision, but rather
the chance of finding any negative news is too low.

An increase in the prize π from success of the risky arm raises both UN(γ) and
UX(γ). Solving the relevant differential equations, we find that7

∂UN(γXN)

∂π
= γXN >

∂UX(γXN)

∂π
.

Since a higher π raises UN(γ) more than it raises UX(γ), the intersection point
γXN moves to the left. On the other hand, γNX does not depend on π. Thus, a
higher reward π expands the optimal use of negative information (γXN, γNX]. The
intuition is that choosing N at γXN can guarantee success under state G (because
the agent’s belief would go up to γNX and he then switches to a perpetual learning
policy which mixes between N and X), while choosing X at γXN does not guarantee
success (because the agent may quit if the belief goes below γQX). If the agent is
indifferent between N and X at γXN for some value of π, he strictly prefers N to X
at γXN when π increases.

It is also straightforward to extend the model of negative information acquisition
to allow for a positive discount rate ρ. Discounting does not change the perpetual
learning policy, but lowers the payoff function US(γ). Using value matching and
smooth pasting between UX(γ) and US(γ) to obtain an explicit formula for γNX, we
can verify that it decreases as ρ increases. Thus, the upper boundary of the nega-
tive information acquisition region decreases. A higher ρ also lowers both UN(γ)

and UX(γ). When negative information acquisition is sufficiently efficient and the
optimal policy is given by case (iii) of Proposition 3, only the effect on UN(γ) of

7The explicit solution UN(γ) is provided in equation (21) in the appendix. If the state is B, an
increase in π has no effect on the payoff from choosing N. If the state is G, the agent chooses N and
then switches to the perpetual learning policy and eventually obtains success from the risky arm. A
unit increase in π raises his payoff by one unit. Thus, γXN is the agent’s expected increase in payoff
when his belief is γXN . On the other hand, if the agent is choosing X at γXN , a unit increase in π

causes UX(γXN) to increase by less than one unit, because, even in state G, it is possible that the agent
may quit before obtaining success.
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a marginal increase in ρ is relevant, and so the lower boundary of the negative in-
formation acquisition region γQN increases. If we have case (ii) instead, numerical
analysis suggests that it lowers UN(γ) more than it lowers UX(γ), and thus the
crossing point γXN shifts to the right as ρ increases.8 A less patient agent tends to
make less use of negative information. The numerical examples shown in panels (c)
and (d) of Figure 2 illustrate this point.

4.4. Fast and slow learning

If the agent combines negative information acquisition with experimentation, the
absence of either negative news from N or success from X implies that the updated
belief can either go up or down, depending on the comparison between αN and λ.
Denote the combined choice of N and X as N†. We refer to the case of upgrading
belief (αN > λ) as “fast learning,” and the case of downgrading belief (αN < λ) as
“slow learning.” For each γ ∈ (0, 1), define DN†(γ) according to

γ(1− γ)(αN − λ)DN†(γ) ≡ c + kN − γλπ + (γλ + (1− γ)αN)V(γ).

Since DN†(γ) is a linear combination of DN(γ) and DX(γ), as in Section 3.4, com-
bined learning is never strictly optimal when the agent can separate negative infor-
mation acquisition from experimentation, whether learning is fast or slow.

However, in a model where the agent must not suspend experimentation in order
to acquire negative information, fast learning and slow learning have qualitatively
different optimal policies. Formally, suppose that the agent can choose one from
{Q, X, N†} at any moment t. Given the definition of DN†(γ) above, we can write the
HJB equation as

0 = max
{
−V(γ), γ(1− γ)λ(DX(γ)−V′(γ)),

γ(1− γ)(αN − λ)(V′(γ)− DN†(γ))
}

. (17)

Since DN†(γ) is a linear combination of DN(γ) and DX(γ), negative information
acquisition combined with experimentation does not change the benefit of informa-
tion BN(γ). It follows that regardless of whether learning is fast or slow, D† is not
optimal for any belief when kN/αN ≥ B∗N.

8This point is not simple to establish analytically. There are multiple forces at work. Importantly,
if the state is G and the agent chooses N at γXN , he has a chance of getting the prize only after the
belief reaches γNX . But if he chooses X at the same belief, he has a chance of getting the prize earlier.
Higher discounting makes the first option relatively less attractive than the second option.
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For fast learning, with αN > λ, the term DN†(γ) enters the HJB equation (17)
above with the same sign as DN(γ) in the corresponding equation (14) in Section 4.2.
As a result, the optimal use of N† is also determined by comparing to a perpetual
policy that alternates between N† and X. Although the belief goes up at the rate
of αN − λ in the absence of news or success, instead of αN under N in the absence
of news alone, keeping the belief unchanged means that the same payoff function
US(γ) defined in Section 4.2 obtains under fast learning. The optimal policy has the
same structure as that described in Proposition 3. In particular, there is a unique
U∗N† ∈ (0, B∗N) such that: (ii′) if kN/αN ∈ (U∗N†, B∗N), then there exists γXN† such
that the optimal policy is Q when γ ≤ γQX, X when γ ∈ (γQX, γXN†] and when
γ ≥ γNX; and N† when γ ∈ (γXN†, γNX]; (iii′) if kN/αN ≤ U∗N†, then there exists
γQN† such that the optimal policy is Q when γ ≤ γQN†, N† when γ ∈ (γQN†, γNX],
and X when γ ≥ γNX. However, since the updated belief in the absence of news or
success goes up at the reduced rate of αN − λ instead of αN, the region of beliefs for
which N† is optimal shrinks at the lower boundary compared to the corresponding
boundary of the region for which N is optimal. In other words, we have γXN† > γXN

and γQN† > γQN.9

For slow learning, with αN < λ, the term DN†(γ) enters the HJB equation (17)
with the opposite sign as DN(γ) in the corresponding equation (14) in Section 4.2.
Because the belief always goes down in the case of slow learning, as in positive
information acquisition, the optimal use of N† when kN/αN < B∗N is determined by
a smooth-pasting condition that requires DX(γ) = DN†(γ) at any switching belief
between N and X. This requirement gives

λαNV(γ)− γλαNπ + αNc + λkN = 0.

Since the right-hand-side of the above is positive at γ = 0 and γ = 1, and since V(γ)

is convex, the smooth-pasting condition is either never satisfied (which happens
when kN/αN > B∗N), or admits two solutions (when kN/α < B∗N). This implies
that for kN/αN < B∗N, N† is chosen for an interval of intermediate beliefs. Let the
smaller and larger switching point be represented by γXN† and γN†X, respectively.

9This follows because N† is equivalent to an interior solution with σN = σX = 1/2, and such a
policy is sub-optimal by Proposition 3. Thus, if we define UN†(γ) as the solution to the counterpart
of (16), with N replaced by N† and with the same boundary condition UN†(γNX) = US(γNX), then
UN†(γ) < UN(γ) for all γ < γNX . Moreover, the crossing point between UN†(γ) and UX(γ) is to the
right of the crossing point between UN(γ) and UX(γ) .
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The optimal policy is: (ii′′) for kN/αN < B∗N, choose Q when γ ≤ γQX, choose X
when γ ∈ (γQX, γXN†] and when γ ≥ γN†X, and choose N† when γ ∈ (γXN†, γN†X].
However, notice that in the case of slow learning, γXN† is not a tipping point, because
the updated beliefs goes down both to the left and to the right of this point when
there is no news or no success. Nonetheless, slow learning cannot be optimally used
a last-ditch effort like positive information acquisition, as the switching point γXN†

is always above γQX. In other words, even when kN/αN is very low, there is no
counterpart to case (iii) of Proposition 3 in slow learning.

5. Positive Versus Negative Information Acquisition

In the previous two sections we have presented two separate models, positive infor-
mation acquisition and negative information acquisition. In this section we connect
the two models in two ways. First, we make a comparison of them in terms of the
region of their optimal use. Such a comparison furthers our understanding of the
comparative statics of positive versus negative information acquisition. Second, we
consider a fully dynamic model in which at any moment the agent can choose be-
tween positive and negative information acquisition in addition to experimentation
and quitting. This optimal dynamic choice helps address the question of when and
what kind of direct learning the agent should optimally engage in.

5.1. Ex ante comparison

From the earlier discussion, we find that both the benefit of positive information
BP(γ) and the benefit of negative information BN(γ) are single-peaked in the belief
about the state. The benefit BP(γ) is maximized at γQX, while the benefit BN(γ) is
maximized at γ∗N. The fact that γQX < γ∗N (see Figure 3) suggests positive infor-
mation acquisition tends to be used when the agent is more pessimistic than when
negative information acquisition is used. This is intuitive because positive informa-
tion acquisition is used as a last-ditch effort and negative information acquisition is
used as an insurance strategy. In the following proposition, we say that an interval
of beliefs is more pessimistic than another interval if both the upper bound and the
lower bound of the first are lower than those of the second.

Proposition 4. If kP/αP = kN/αN ≤ min{B∗P, B∗N}, then positive information acqui-
sition is optimally used at beliefs that are more pessimistic than the beliefs when negative
information acquisition is optimally used.
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Without restricting positive and negative information acquisition to have the
same efficiency, we can still ensure that when both are optimally used for some
beliefs, it can never happen that the lower bound of the positive information acqui-
sition region is higher than the upper bound of the negative information acquisition
region. This claim follows because

γQP ≤ γQX < γ∗N ≤ γNX.

However, the information acquisition regions for P and N are no longer ordered,
because γPX may exceed γNX. This is the case if, example, kP/αP is close to 0 while
kN/αN is close to B∗N. With the restriction of kP/αP = kN/αN = k/α, the optimal use
of P may or may not overlap with the optimal use of N. For example, if k/α is just
below B∗N and B∗N < B∗P, then γXN is close to γNX, which by Proposition 4 strictly
exceeds γPX; hence the two optimal uses do not overlap. If k/α is close to 0, γQN

goes to 0 while γPX goes to 1; hence they do overlap.

5.2. Dynamic choice

Imagine that the agent can choose {Q, X, P, N} at any moment. The HJB equation
becomes

0 = max
{
−V(γ), γ(1− γ)λ(DX(γ)−V′(γ)), γ(1− γ)αP(DP(γ)−V′(γ)),

γ(1− γ)αN(V′(γ)− DN(γ))
}

. (18)

The new comparison in (18) is between N and P. Since the agent’s belief goes
up when he chooses N and there is no negative news, and it goes down when he
chooses P and there is no positive news, the switching point between N and P is
determined by the comparison with a new perpetual policy.10 It is straightforward
to show that the payoff from permanently alternating between N and P to keep the
belief stationary until the arrival of either the positive or negative news yields the
payoff function

UY(γ) = γ(π − c/λ)− kN/αN − kP/αP.

As in the case of the absorbing point γNX between N and X, there is a unique
candidate for an absorbing point between N and P, denoted as γNP, defined by
smooth pasting and value matching with UY. This gives

γNP =
kP/αP

kN/αN + kP/αP
,

10Specifically, this policy is σP = αN/(αP + αN), σN = αP/(αP + αN), and σX = σQ = 0.

28



Figure 6. Optimal policy in the dynamic choice model when kP/αN and kN/αN are equal, and are
both sufficiently small. The value function is tangent to UY at the absorbing point γNP, where the
agent mixes between N and P until the true state is revealed. The kink of the value function at γPN

is a tipping point.

with N chosen below the absorbing point and P chosen above it.

A full analysis of this model involves a large number of cases depending on the
parameters, and is not particularly insightful. Instead we focus on the special case
where kP/αP = kN/αN = k/α, and k/α is small relative to both c/λ and π − c/λ

(the payoff when the state is known to be G).

Proposition 5. Let σ(t) ∈ {Q, X, P, N} and assume kP/αP = kN/αN = k/α. For
any k/α sufficiently small, there exists γPN ∈ (γQP, γNP) such that the optimal policy
is: Q when γ ≤ γQP; P when γ ∈ (γQP, γPN] and when γ ∈ [γNP, γPX]; N when
γ ∈ (γPN, γNP]; and X when γ > γPX.

Figure 6 illustrates the value function corresponding to the optimal policy de-
scribed in Proposition 5. The value function has a convex kink at the tipping point
γPN. Below it, the agent optimally chooses P as a last-ditch effort to find good news
before he quits, which mimics the optimal policy in case (ii) of Proposition 1; above
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it, the agent chooses N, and switches to a mix of N and P if no negative news is
found and the belief goes up to γNP. Because information acquisition is efficient
relative to experimentation, the agent chooses X only when the belief is close to 1. If
success does not arrive, he switches to P, and eventually switches to a mix of N and
P when no positive news is found.

Proposition 5 shows positive information acquisition is optimally used in two
ways when both P and N are sufficiently efficient. For γ ∈ (γQP, γPN], the chance of
getting good news is relatively low. Positive information acquisition is used as a last-
ditch effort to resurrect a potentially valuable project before the agent quits. This is
the same as what we have in Section 3. However, with N now available at the same
efficiency level, the region where P is optimally used as a last-ditch effort shrinks
from (γQP, γPX] to (γQP, γPN]. Positive information acquisition is also optimal for
γ ∈ [γNP, γPX], but plays a different role. With γNP as an absorbing point, the agent
optimally chooses P when the belief is above γNP and the chance of getting positive
news is relatively high, and the agent optimally chooses N when the belief is below
γNP and the chance of getting negative news is relatively high. Therefore, similar to
a finding in Che and Mierendorff (2017), positive information acquisition is part of
the optimal strategy of pursuing “confirmatory” news when information acquisition
is efficient.

In contrast, negative information acquisition is only used as part of confirmatory
learning around the absorbing point γNP with positive information acquisition. The
use of N as an insurance strategy to avoid wasteful experimentation in Section 4 has
disappeared, because N is no longer used in an interval of beliefs with an upper-
bound γNX as in case (ii) and case (iii) of Proposition 3. This is in spite of the result
in Proposition 4 that γNX > γPX, so that the agent optimally uses negative infor-
mation when he is more optimistic compared to when he uses positive information.
However, that result presumes that P and N are only available on their own. When
both are available at the same sufficiently efficient level, Proposition 5 shows that the
absorbing point γNX between N and X is no longer relevant. The high efficiency of
positive information acquisition has raised the value function entirely above US, so
that X can only be used on its own, and not alternated with N in perpetual learning
at γNX.
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6. Discussion

There are potentially two broad directions where the model can be further extended.
One is to generalize the idea of information acquisition in an experimentation model
beyond positive and negative structures, maintaining the key feature that informa-
tion acquisition has no direct payoffs. In the present paper, only two states are
possible, one in which the risky arm is good and is expected to deliver a success,
and the other in which the arm is bad and no success is ever possible. As a result,
there is limited scope to address the issue of which type of information, and when,
the agent should try to acquire. In a general environment with more than two pos-
sible states, we may model the dynamic trade-off between a narrow but in-depth
search for information about the state versus a broad but cursory one. For example,
in the R&D application of the bandit problem, a firm might be engaged in a prod-
uct development process, where the potential new product can have several features
that may be represented by a multi-dimensional state space. How to model the state
space and build different types of information structures remains a challenge.

The second direction is to extend the single-agent model to a game between rival
agents competing to be the first to achieve success from a risky arm. For example,
imagine firms in the same market competing to develop a new product. There may
be some uncertainty in the true state of the world, which could either be such that
firms face identical and independent prospects of successfully developing a new
product, or no success is possible by any firm because there is no demand for it or
because the technology is not feasible. Information acquisition can be introduced
in such a competitive framework, by assuming that agents have an independent, re-
versible and costly option of uncovering conclusive news about the state. The chal-
lenge is that if agents’ information acquisition activities are not observable and news
from information acquisition is not shared, even if they start with the same infor-
mation about the state, private information will emerge among them. Recent papers
that have introduced private information to bandit problems, including Moscarini
and Squintani (2010), Farrell and Simcoe (2012), and Guo and Roesler (2016), may
suggest a way to analyze the strategic interactions that come with learning while
experimenting.
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Appendix

Proof of Proposition 1. By the principle of dynamic programming,

V(γ) = max
σQ,σX ,σP

(γλπ − c)σXdt + (γαP(π − c/λ)− kP)σPdt

+ (1− σQdt− γλσXdt− γαPσPdt)(V(γ) + V′(γ)dγ).

where dγ = −γ(1− γ)(λσX + αPσP)dt. Using the definitions of DX and DP, we
have the HJB equation which allows for mixing:

0 = max
σQ,σX ,σP

−V(γ)σQ + γ(1− γ)(DX(γ)−V′(γ))λσX

+ γ(1− γ)(DP(γ)−V′(γ))αPσP, (19)

subject to σQ, σX, σP ≥ 0 and σQ + σX + σP = 1.

In the following, for σ = X, P, we use Ũσ(γ; γ̂, v̂) to represent the solution to
the differential equation, Dσ(γ) = U′(γ) (where U replaces V in the equation that
defines Dσ), with boundary condition U(γ̂) = v̂.

Case (i). The candidate value function V(γ) corresponding to the policy is:

V(γ) = UX(γ) =

0 if γ ≤ γQX,

ŨX(γ; γQX, 0) if γ > γQX.

It is straightforward to show that kP/αP ≥ B∗P implies γPX ≤ γQX ≤ γQP. For
γ < γQX, we have V′(γ) = V(γ) = 0. By definition of γQX, we have DX(γ) < V′(γ).
Also, DP(γ) < V′(γ) because γ < γQX ≤ γQP. This implies that the HJB equation
(19) holds, with σQ = 1 solving the maximization problem. For γ > γQX, we have
V(γ) > 0 and V′(γ) = DX(γ). Moreover, DP(γ) < V′(γ) because γ > γQX ≥ γPX.
It follows that (19) holds, with σX = 1 solving the maximization problem on the
right-hand-side. Since V is continuously differentiable and is a solution to the HJB
equation (19), by Theorem 9.8 of Oksendal and Sulem (2005), it is the value function
corresponding to problem (2).

Case (ii). The candidate value function corresponding to the policy is:

V(γ) =


0 if γ ≤ γQP,

ŨP(γ; γQP, 0) if γ ∈ (γQP, γPX],

ŨX(γ; γPX, Ũ(γPX)) if γ > γPX.
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Observe that γQP < γQX < γPX because kP/αP < B∗P in this case. For γ < γQP,
we have V′(γ) = V(γ) = 0. Since DP(γ) < V′(γ) by definition of γQP, and since
DX(γ) < V′(γ) by definition of γQX and by γQX > γQP, the HJB equation (19)
holds, with σQ = 1 solving the maximization problem on the right-hand-side. For
γ ∈ (γQP, γPX), we have V(γ) > 0 and V′(γ) = DP(γ). Also, DX(γ) < V′(γ) be-
cause γ < γPX. It follows that the HJB equation (19) holds, with σP = 1 solving the
maximization problem. For γ > γPX, we have V′(γ) = DX(γ). Also, DP(γ) < V′(γ)
because γ > γPX. Therefore the HJB equation (19) holds, with σX = 1 solving the
maximization problem on the right-hand-side. Since V is a continuously differen-
tiable function that satisfies (19), it is the value function for problem (2).

Proof of Proposition 2. Suppose to the contrary that σ(t) = P† for t such that γ(t)
belongs to some interval (γ′, γ′′). Then the HJB equation (11) implies that, for all
γ ∈ (γ′, γ′′),

DP†(γ) = V′(γ) ≥ max{DP(γ), DX(γ)}.

But since
(λ + αP)DP†(γ) = λDX(γ) + αPDP(γ),

the HJB equation would imply that DX(γ) = DP(γ) for all γ ∈ (γ′, γ′′), which is a
contradiction because DX(γ) = DP(γ) implies γ = γPX.

Proof of Proposition 3. Using a similar derivation as in the proof of Proposition 1,
we can show that the HJB equation that allows for mixing is

0 = max
σQ,σX ,σN

−V(γ)σQ + γ(1− γ)(DX(γ)−V′(γ))λσX

+ γ(1− γ)(V′(γ)− DN(γ))αNσN, (20)

subject to σQ, σX, σN ≥ 0 and σQ + σX + σN = 1. Denote as ŨX(γ; γ̂, v̂) the solution to
the differential equation, DX(γ) = U′(γ) (where U replaces V in the equation that
defines DX), with boundary condition U(γ̂) = v̂.

Case (i). The candidate value function is V(γ) = UX(γ). For γ < γQX, we
have V′(γ) = V(γ) = 0. Since DX(γ) < V′(γ) by definition of γQX, and since
DN(γ) > V′(γ) by definition of DN, the HJB equation (20) holds, with σQ = 1
solving the maximization problem of the right-hand-side. For γ > γQX, we have
V(γ) > 0 and V′(γ) = DX(γ). Moreover,

γ(1− γ)(DN(γ)−V′(γ)) = kN/αN − (γπ − c/λ−UX(γ)) = kN/αN − BN(γ).
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Since kN/αN ≥ B∗N, we have DN(γ) ≥ V′(γ). Hence (20) holds, with σX = 1 solving
the maximization problem. The value function V is by construction continuously
differentiable, and thus corresponds to the solution to the original problem (12).
This completes the proof for case (i).

Now, suppose that kN/αN < B∗N. Recall that UN(γ) crosses UX(γ) below γNX at
most once, and at the crossing point UN is steeper than UX. Before proceeding to
cases (ii) and (iii), we show that there is a unique value of kN/αN ∈ (0, B∗N) such that
UN(γ) crosses UX(γ) at γQX, with UN(γQX) = 0. As UN solves DN(γ) = V′(γ) with
boundary condition V(γNX) = US(γNX), an increase in kN/αN strictly decreases
UN(γQX), because γNX is smaller, and US(γ) is smaller and DN(γ) is greater for all
γ. At kN/αN = 0, we obtain the explicit solution UN(γ) = γ(π − c/λ), and thus
UN(γQX) > 0. At kN/αN = B∗N, by definition of B∗N we have that UX is tangent
to US at γNX. The strict single-crossing property of UN(γ) − UX(γ) implies that
UN(γ) < UX(γ) for all γ < γNX, and hence UN(γQX) < UX(γQX) = 0. Thus,
there is U∗N ∈ (0, B∗N) such that UN(γQX) > 0 if and only if kN/αN < U∗N. If
kN/αN ∈ [U∗N, B∗N), then UN(γ) crosses UX(γ) to the right of γQX at a point denoted
γXN; this corresponds to case (ii) of the proposition. If kN/αN < U∗N, the crossing
point is to the left of γQX, which we denote as γQN; this corresponds to case (iii) of
the proposition.

Case (ii). Consider the candidate value function:

V(γ) =


UX(γ) if γ ≤ γXN,

UN(γ) if γ ∈ (γXN, γNX],

ŨX(γ; γNX, US(γNX)) if γ > γNX.

By the strict single-crossing property of UN(γ) − UX(γ), the constructed V has a
convex kink at γXN, and is therefore strictly convex for all γ > γQX. It follows that

γ(1− γ)(DN(γ)− DX(γ)) = V(γ)−US(γ) ≥ 0

for all γ > γQX, with strict inequality except at γ = γNX.

For γ < γQX, the argument for verifying that V(γ) satisfies (20) is the same as in
case (i). For γ ∈ (γQX, γXN) and γ > γNX, we have DX(γ) = V′(γ) by construction.
Moreover, DN(γ) > V′(γ). Hence the HJB equation (20) holds with σX = 1 solving
the maximization problem on the right-hand-side. For γ ∈ (γXN, γNX), we have
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DN(γ) = V′(γ) by construction. Moreover, DX(γ) < V′(γ). Hence the HJB equation
(20) holds with σN = 1 solving the maximization problem.

Finally, V(γ) is continuously differentiable by construction, except at the point
γXN. At γXN, the left-derivative is less than the right-derivative:

V′−(γXN) = DX(γXN) < DN(γXN) = V′+(γXN).

For every v ∈ [V′−(γXN), V′+(γXN)], we have

0 ≥ max
σQ,σX ,σN

−V(γXN)σQ + γXN(1− γXN)(DX(γXN)− v)λσX

+ γXN(1− γXN)(v− DN(γXN))αNσN.

By a standard verification theorem (Oksendal and Sulem, 2005, Theorem 9.8), the
value function V(γ) is a viscosity solution of the HJB equation, and therefore corre-
sponds to the solution to the original maximization problem (12).

Case (iii). The candidate value function is constructed as follows:

V(γ) =


0 if γ ≤ γQN,

UN(γ) if γ ∈ (γQN, γNX],

ŨX(γ; γNX, US(γNX)) if γ > γNX.

Following a similar argument as in case (ii), we can show that DN(γ) ≥ DX(γ) for
all γ > γQN, with strictly inequality except for γ = γNX.

For γ < γQN, we have V(γ) = V′(γ) = 0. Since γQN < γQX in this case,
DX(γ) < V′(γ). Furthermore, DN(γ) > V′(γ). Hence, the HJB equation (20) holds
with solution σQ = 1 to the maximization problem. For γ ∈ (γQN, γNX), we have
DN(γ) = V′(γ) by construction. Moreover, DX(γ) < V′(γ). Hence V satisfies
(20) with σN = 1 solving the maximization problem on the right-hand-side. For
γ > γNX, we have DX(γ) = V′(γ) by construction. Moreover, DX(γ) < V′(γ).
Hence V satisfies (20) with solution σX = 1 to the maximization problem.

The function V(γ) is continuously differentiable except at the point γQN. Further,
at γQN we have

V′−(γQN) = 0 < DN(γQN) = V′+(γQN).

For every v ∈ [V′−(γQN), V′+(γQN)], we have

0 ≥ max
σQ,σX ,σN

(DX(γQN)− v)λσX + (v− DN(γQN))αNσN,
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where the inequality follows because γQN < γQX implies that DX(γQN) < 0. Thus
the value function V(γ) is a viscosity solution of the HJB equation, and is the solu-
tion to problem (12).

Proof of Proposition 4. Denote kP/αP = kN/αN = k/α. A direct comparison of the
upper bound of the optimal uses establishes that γPX < γNX.

For the lower bound, when k/α > U∗N, from case (ii) of Proposition 3, we have
γQP ≤ γQX < γXN. When k/α ≤ U∗N, in case (iii) of Proposition 3, we have

UN(γ) = γ(π − c/λ)− k/α + γ

(
log
(

k/α

c/λ

γ

1− γ

)
− 1
)

k/α. (21)

At γ = γQP, the first two terms vanish. The third term is negative, because from
γQP ≤ γQX < γ∗N < γNX we have

k/α

c/λ

γQP

1− γQP
<

k/α

c/λ

γNX

1− γNX
= 1.

As a result, UN(γQP) < 0 = UN(γQN). Since UN is an increasing function, we have
γQP < γQN. Thus, for any k/α ≤ min{B∗P, B∗N}, we have γQP < min{γXN, γQP}.

Proof of Proposition 5. For each σ = X, P, N, denote as Ũσ(γ; γ̂, v̂) to represent the
solution to the differential equation, Dσ(γ) = U′(γ) (where U replaces V in the
equation that defines Dσ), with boundary condition U(γ̂) = v̂. The candidate value
function is constructed as follows:

V(γ) =



0 if γ ≤ γQP,

ŨP(γ; γQP, 0) ≡ ŨP1(γ) if γ ∈ (γQP, γPN],

ŨN(γ; γNP, UY(γNP)) ≡ ŨN(γ) if γ ∈ (γPN, γNP],

ŨP(γ; γNP, UY(γNP)) ≡ ŨP2(γ) if γ ∈ (γNP, γPX],

ŨX(γ; γPX, ŨP2(γPX)) ≡ ŨX(γ) if γ > γPX.

We begin by showing that the following four conditions hold when k/α is suffi-
ciently small. First, γQP < γQX < γPX, so we have case (ii) of Proposition 1 if N is
unavailable. This is satisfied if k/α < (π − c/λ)c/(λπ).

Second, γQP < γNP < γPX, so that the switching point γNP between N and P is
potentially valid. This is satisfied if k/α < min{c/(2λ), (π − c/λ)/2}.
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Third, ŨN(γ) and ŨP1(γ) cross each other once at some γPN which satisfies
Ũ′N(γPN) > Ũ′P1(γPN) and γQP < γPN < γNP, so that V has a convex kink at the
tipping point γPN. At any crossing point γPN, the sign of Ũ′N(γPN)− Ũ′P1(γPN) is
the same as

γPN(1− γPN) (DN(γPN)− DP(γPN)) = ŨN(γPN)−UY(γPN),

which is positive because ŨN is strictly convex while UY is linear, and they are
tangent to each other at γNP. Solving the relevant differential equations gives

ŨN(γ) = γ(π − c/λ)−
(

1 + 2γ− γ log
γ

1− γ

)
k/α,

ŨP1(γ) = γ(π − c/λ)−
(

1 + (1− γ) log
(

γ

1− γ

1− γQP

γQP

))
k/α.

Clearly, we have ŨN(γQP) < ŨP1(γQP); we also have ŨN(γPN) > ŨP1(γPN) if
log((1− γQP)/γQP) > 2. The third condition is satisfied if k/α is sufficiently small.

Fourth, ŨX(γNX) > US(γNX), so γNX is not a potential switching point between
N and X. Solving the differential equation yields

ŨP2(γ) = γ(π − c/λ)−
(

1 + 2(1− γ) + (1− γ) log
γ

1− γ

)
k/α.

We have

ŨX(γNX)−US(γNX) > ŨP2(γNX)−US(γNX) =

(
c/λ

k/α
− log

c/λ

k/α
− 2
)
(1−γNX)k/α.

For sufficiently small k/α, the term in the first bracket on the right-hand-side above
is positive and hence the fourth condition holds.

Now, we show that V satisfies the HJB equation (18). For γ < γQP, we have
V′(γ) = 0. By definition of γQP, we have DP(γ) < V′(γ). Further, DX(γ) < V′(γ)
because γ < γQP < γQX by the first condition above. Finally, DN(γ) > V′(γ). Thus,
the HJB equation (18) holds with σ = Q solving the maximization problem on the
right-hand-side.

For γ ∈ (γQP, γPN), we have V′(γ) = DP(γ). Since γ < γPN < γPX by the
second condition, DX(γ) < V′(γ). Moreover, since V has a convex kink at γNP and
is tangent to UY at γNP,

γ(1− γ)(DN(γ)− DP(γ)) = V(γ)−UY(γ) ≥ 0,
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with strict inequality except for γ = γNP. Thus, DN(γ) > V′(γ) for γ ∈ (γQP, γPN).
The HJB equation (18) holds with σ = P solving the maximization problem.

For γ ∈ (γPN, γNP), we have V′(γ) = DN(γ). We have just argued above that
DP(γ)−V′(γ) < 0. By the second condition, this in turn implies DX(γ)−V′(γ) < 0
because γ < γNP < γPX. Thus, (18) holds with σ = N solving the maximization
problem.

For γ ∈ (γNP, γPX), we have V′(γ) = DP(γ). As before, DN(γ) > V′(γ), and
DX(γ) − V′(γ) < 0 because γ < γPX. Thus, (18) holds with σ = P solving the
maximization problem.

Finally, for γ > γPX, we have V′(γ) = DX(γ) by construction. Since γ > γPX,
we have DP(γ) < V′(γ). Observe that

γ(1− γ)(DN(γ)−V′(γ)) = V(γ)−US(γ).

By the fourth condition, V(γNX) > US(γNX). By definitions of DX and US, we have
V′(γNX) < π, and if we define γ̂ such that V′(γ̂) = π, then γ̂ > γNX and hence
V(γ̂) > US(γ̂). Since V is convex and US is linear, we have V(γ) > US(γ) for all
γ > γPX, and thus DN(γ) > V′(γ). The HJB equation (18) holds with σ = X solving
the maximization problem.

We have established that V(γ) satisfies the HJB equation (18) whenever it is dif-
ferentiable. Moreover, V is continuously differentiable by construction, except at the
point γPN, where it has a convex kink. Thus, V is a viscosity solution to the HJB
equation. By the same verification theorem invoked in the proof of Proposition 3, V
is the value function for the control problem involving {Q, X, P, N}.
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