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Abstract

We study when and how randomization can help improve the seller’s revenue in the

sequential screening setting. In a model with discrete ex ante types and a continuum

of ex post valuations, the standard approach based on solving a relaxed problem that

keeps only local downward incentive compatibility constraints often fails. Under a

strengthening of first-order stochastic dominance ordering on the valuation distribution

functions of ex ante types, we introduce and solve a modified relaxed problem by

retaining all local incentive compatibility constraints, provide necessary and sufficient

conditions for optimal mechanisms to be stochastic, and characterize optimal stochastic

contracts. Our analysis mostly focuses on the case of three ex ante types, but our

methodology of solving the modified problem, as well as the necessary and sufficient

conditions for randomization to be optimal, can be extended to any finite number of

ex ante types.
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1 Introduction

Random allocations through rationing and lotteries are common for selling event tickets, ma-

terial inputs, or consumer products (see Gilbert and Klemperer (2000) for a list of examples).

For the static environments of monopoly pricing or auctions, the literature of mechanism

design (see Myerson (1981), Riley and Zeckhauser (1983), and Bulow and Roberts (1989),

among others) has established when and how randomization can help alleviate incentive

problems. In particular, Riley and Zeckhauser (1983) prove that a posted price is always

revenue-maximizing when the seller can fully commit to a selling mechanism for a single

buyer. They interpret random allocations as “haggling,” and show that they do not help the

seller to price discriminate. In this paper, we will show why and how random allocations

can help dynamic price discrimination, and characterize optimal stochastic mechanisms.

Relatively little is known about random allocations in dynamic environments. Almost

all the dynamic mechanism design literature adopts the standard approach which forms a

relaxed problem by keeping only local downward incentive compatibility constraints and then

imposes strong conditions under which the deterministic solution to the relaxed problem also

solves the original problem. Consider the formulation of the two-period sequential screening

problem first introduced by Courty and Li (2000) where a seller of an indivisible good

designs a selling mechanism for a buyer who knows which distribution that the valuation of

the good is drawn from in period one (his ex ante type) but his valuation is only realized

in period two after agreeing to the mechanism. With discrete ex ante types ranked by first

order stochastic dominance, the standard approach forms a relaxed problem by keeping only

local downward incentive compatibility constraints and the individual rationality constraint

of the lowest ex ante type. If the solution to the relaxed problem, found through point-

wise maximization, can be represented by cutoff valuations that are monotone in types,

then this solution satisfies all dropped local upward and non-local incentive compatibility

constraints and hence it corresponds to an optimal mechanism. Moreover, this mechanism

is deterministic, implementable by a menu of option contracts.

The standard approach fails if point-wise maximization leads to allocations that are not

in a cutoff form for some ex ante types, or if allocations are in a cutoff form for all types,
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but the cutoffs are not monotone with respect to type. The existing literature on dynamic

mechanism design is silent on how to characterize the optimal mechanism in this case.

The goal of this paper is to characterize optimal dynamic mechanisms when the standard

approach of point-wise maximization approach fails and shed light on the role of random-

ization in optimal mechanisms. Our approach is based on a modified relaxed problem. We

impose the same binding local downward incentive compatibility constraints and the indi-

vidual rationality constraint for the lowest type to arrive at the same objective function as in

the standard approach. However, we retain local upward incentive compatibility constraints,

as well as monotonicity of the allocation with respect to ex post valuation for each type.1

By imposing a strengthening of first order stochastic dominance, we show that any solution

to our modified relaxed problem corresponds to an optimal mechanism because it satisfies

all dropped constraints in the original problem.

Our analysis focuses mostly on the sequential screening problem with three ex ante types,

although it can be generalized to any finite number of types ranked by first order stochastic

dominance. We need a minimum of three types for the standard approach to fail and for

stochastic mechanisms to be optimal.2 The modified relaxed problem is to choose non-

decreasing allocations of the stochastically dominated low type and the middle-ranked type

to maximize the sum of the expected dynamic virtual surpluses of the two types, subject to

the local upward incentive compatibility constraint, which requires a weighted average of the

middle type’s allocation to be greater than or equal to the average of the low type with the

same weights. If the solution to the modified relaxed problem is deterministic and satisfies

the local upward incentive compatibility constraint with slack, then it solves the original

problem – this is when the standard approach works. When the standard approach fails,

the solution can still be deterministic with a binding local upward incentive compatibility

constraint, as it can be optimal for the two types to have the same cutoff allocation as a

1Adding these constraints to the standard relaxed problem means we do not distinguish whether the
standard approach fails because the point-wise maximizer is in a cutoff form but the cutoffs are not monotone
in type, or because after ironing the cutoffs are not monotone.

2With only two types the upward incentive compatibility constraint never binds at the solution to the
relaxed problem. The allocation to the stochastically dominant high type is efficient. By Riley and Zeck-
hauser (1983), there is always a cutoff solution to maximizing the dynamic virtual surplus of the dominated
low type among all non-decreasing allocations, and by first order stochastic dominance ranking, the cutoff
is inefficiently high.
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compromise between maximizing the sum of dynamic virtual surpluses and satisfying the

local upward incentive compatibility constraint.

We identify the necessary and sufficient conditions for optimality of stochastic mecha-

nisms with a perturbation argument. Starting from a deterministic solution with a common

cutoff for the low and the middle types, we ask whether it is possible to increase the dynamic

virtual surplus of either type by replacing the cutoff allocation for that type with a stochastic

allocation that leaves the local upward incentive compatibility constraint binding. We show

that the necessary and sufficient conditions for randomization can be stated as a comparison

between the ratio of the average dynamic virtual surplus of either the low type or the middle

type to the average slack in the local upward incentive compatibility constraint for any inter-

val below the common cutoff and the ratio for any interval above the cutoff. If the former is

always smaller than the latter for both types, then any optimal mechanism is deterministic;

conversely, if the condition fails for either the low type or the middle type, or both, then any

optimal mechanism is stochastic. These ratio conditions are straightforward to verify under

additional assumptions on the shape of the average ratio and the point ratio. The same con-

ditions allow us to provide a full characterization of the optimal mechanisms, whether they

are stochastic or deterministic. Both our sufficient and necessary conditions for stochastic

mechanisms to be optimal and our characterization of optimal stochastic mechanisms have

their counterparts with more than three types.

There is an extensive literature on “ironing” in static mechanism design problems when

various regularity conditions fail, starting from Myerson (1981) and Riley and Zeckhauser

(1983). The techniques are well presented in, e.g., Fudenberg and Tirole (1991), and have

also been extended to multi-dimensional screening problems (see, e.g., Rochet and Chone,

1998). Although dynamic mechanism design in general, and sequential screening in partic-

ular, is closely related to multi-dimensional screening,3 there has not been much progress

made in the existing literature in characterizing stochastic dynamic mechanisms when the

standard approach of point-wise maximization fails. Courty and Li (2000) primarily focus

3Krähmer and Strausz (2017) establish the equivalence between the sequential screening model and a
static screening model with two-dimensional private information, by endowing the seller with a payoff that is
a function of the buyer’s ex ante type and ex post valuation. They use the equivalence to provide a sufficient
condition for deterministic mechanisms to be optimal in the dynamic setting.
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on deterministic mechanisms, but they provide an example of stochastic mechanism at the

end of their paper, which serves as the starting point of the present paper. In a dynamic

non-linear pricing setting of Mussa and Rosen (1978) with a Markovian information struc-

ture, Battaglini and Lamba (2019) argue that the first-order approach generally fails. They

provide an example with three payoff types and two time periods, and show that “dynamic

pooling” is generally optimal. In particular, after some report in the first period, two differ-

ent second-period types receive the same quantities. Their general analysis is quite different

from ours, and mostly focus on providing approximation results. Krasikov and Lamba (2021)

study a sequential screening problem where a buyer’s valuation follows a Poisson renewal

process. At any instant between the time of contracting and a terminal time, the buyer’s

valuation either stays the same or, when Poisson shock occurs, is redrawn from an exoge-

nous continuous distribution. They show that the standard approach fails, and focus on

characterizing the optimal deterministic dynamic mechanism.

Bergemann, Castro, and Weintraub (2020) study a sequential screening model with ex

post individual rationality constraints, and provide necessary and sufficient conditions for

optimal sequential screening to be stochastic. Our model differs from Bergemann, Castro,

and Weintraub (2020) because we impose ex ante rather than ex post individual rationality

constraints. In their benchmark model with two ex ante types, the only relevant incentive

compatibility constraint in Bergemann, Castro, and Weintraub (2020) is downward and

local. In contrast, even with three ex ante types, our model has upward and global incentive

compatibility constraints. Correspondingly, we impose a stronger condition than first order

stochastic dominance on ex ante types to construct the relaxed problem with only local

downward incentive compatibility constraints. Our surplus-to-slack ratio is inspired by the

profit-to-rent ratio defined in Bergemann, Castro, and Weintraub (2020). Although our ratio

arises from the dynamic virtual surplus and an upward incentive compatibility constraint

while theirs is static with only a downward constraint , the two ratios play a similar role in

establishing necessary and sufficient conditions for stochastic mechanisms to be optimal in

the respective problems.4

4 A similar ratio also appears in a sequential delegation setting of Krähmer and Kováč (2016), and is
crucial to determine whether it is optimal to screen the agent’s initial information. Their model share similar
information structure as our model, but their analysis is quite different because there are no transfers.
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This paper is organized as follows. In Section 2, we present the main model of sequential

screening with three ex ante types. After introducing the standard relaxed problem and our

modified relaxed problem, we use a numerical example to show that the standard approach

based on the relaxed problem can fail; the optimal mechanism can still be deterministic

when the standard approach fails; and random allocations can be optimal. In Section 3, we

introduce average and point surplus-to-slack ratios, and use them to characterize necessary

and sufficient conditions for stochastic mechanisms. In Section 4, we show how to construct

optimal stochastic mechanisms using the modified relaxed problem. Section 5 offers exten-

sions of our main results to sequential screening with more than three types. We show how to

generalize the necessary and sufficient conditions for stochastic mechanisms. Our approach

based on solving the modified relaxed problem is local, and requires a strengthening of first

order stochastic dominance ranking to provide the sufficient conditions for randomization

and to characterize optimal stochastic mechanisms. In Section 6, we provide an alterna-

tive global approach and show that the insights based on the local approach remain largely

intact without strengthening the first order stochastic dominance ranking. In Appendix A

we further develop the illustrative example and present a class of analytical examples with

exponential distributions to illustrate how to construct the optimal stochastic mechanism

with three ex ante types, and how to generalize the construction to more than three types.

2 The Model

A seller has one object for sale to a potential buyer. There are two periods. The seller and

the buyer are risk-neutral, and do not discount. The buyer’s value ω ∈ Ω ≡ [ω, ω] for the

good is unknown to both the buyer and the seller in period one. We allow for the possibility

that ω = ∞. The seller’s reservation value is known to be c < ω.

In period one, the buyer privately observes a signal θ ∈ Θ about ω, which we refer to

as his type. We assume that Θ = {H, M, L}, with probability φθ for each θ = H, M, L

and
∑

θ φθ = 1. For each θ ∈ Θ, let Fθ(·) be the conditional distribution function over Ω,

and we assume that Fθ(·) has positive and finite density fθ(·). We assume that type H is

higher than M , which is in turn higher than L in first order stochastic dominance, that is,
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FH (ω) ≤ FM(ω) ≤ FL(ω) for all ω, with strict inequalities for a positive measure of ω. In

period two, the buyer observes his value ω. The non-participation payoff of the buyer is

normalized to 0 regardless of his ex ante type.

The seller chooses a direct revelation mechanism (xθ (ω) , tθ(ω)), where xθ (ω) is the allo-

cation rule and tθ (ω) is payment rule for reported type θ in period one and reported value

ω in period two. The objective function of the seller’s optimization problem is

max
(xθ,tθ)

∑

θ=H,M,L

φθ

∫ ω

ω
(tθ (ω) − cxθ (ω)) fθ (ω) dω (P)

subject to four sets of constraints. First, the incentive compatibility constraints in period

two: for each θ = H, M, L, and for all ω, ω′ ∈ [ω, ω],

ωxθ(ω) − tθ(ω) ≥ ωxθ(ω
′) − tθ(ω

′). (ICθ)

Second, the individual rationality constraints in period one: for each θ = H, M, L,

∫ ω

ω
(ωxθ (ω) − tθ (ω)) fθ (ω) dω ≥ 0. (IRθ)

Third, the IC constraints in period one: for each θ = H, M, L,

∫ ω

ω
(ωxθ (ω) − tθ (ω)) fθ (ω) dω ≥

∫ ω

ω
(ωxθ′ (ω) − tθ′ (ω)) fθ (ω) dω, (ICθθ′)

for all θ′ 6= θ = H, M, L. Fourth, the feasibility constraints on allocations xθ, θ = H, M, L:

0 ≤ xθ(ω) ≤ 1 (FEθ)

for all ω ∈ [ω, ω]. A solution to (P) is an “optimal mechanism.”

2.1 A modified relaxed problem

A standard result in mechanism states that allocation monotonicity with respect to val-

uation together with an envelope condition is both necessary and sufficient for incentive
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compatibility in period two. That is, for each θ = H, M, L, ICθ holds if and only if xθ (ω) is

non-decreasing in ω, and

ωxθ (ω) − tθ (ω) = uθ (ω) +
∫ ω

ω
xθ (s) ds

for all ω, where uθ (ω) = ωxθ (ω) − tθ (ω). Through integration by parts, we can rewrite

individual rationality constraint IRθ for each θ = H, M, L as

uθ (ω) +
∫ ω

ω
xθ (ω) (1 − Fθ (ω)) dω ≥ 0,

and incentive compatibility constraint ICθθ′ for each pair θ 6= θ′ = H, M, L as

uθ (ω) +
∫ ω

ω
xθ (ω) (1 − Fθ (ω)) dω ≥ uθ′ (ω) +

∫ ω

ω
xθ′ (ω) (1 − Fθ (ω)) dω.

The standard “relaxed problem” is derived by binding the two local downward period

one IC constraints, ICML and ICHM , and the individual rationality constraint for the lowest

type, IRL. The three binding constraints can be used to solve for uθ(ω) for each θ = H, M, L.

Define the dynamic virtual surplus function δθ(ω), θ = H, M, L, as the difference between

the trade surplus with type θ and the information rent paid to all types higher than θ per

unit of allocation of the good to type θ, given by

δH(ω) = ω − c,

δM(ω) = ω − c −
φH(FM(ω) − FH(ω))

φMfM(ω)
,

δL(ω) = ω − c −
(φM + φH)(FL(ω) − FM(ω))

φLfL(ω)
.

The objective function in the relaxed problem becomes

max
(xθ)

∑

θ=H,M,L

∫ ω

ω
xθ(ω)φθδθ(ω)fθ(ω)dω. (RP)

The standard approach is to solve (RP) by point-wise maximization, subject to only

the feasibility constraints (FEθ). The allocation for type H is efficient with xH(ω) = 1ω≥c.
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When δM(ω) and δL(ω) both cross 0 only once and only from below, and when the crossing

point of δM is smaller than or equal that of δL, the solutions to the relaxed problem are

deterministic in a cutoff form, and satisfy all remaining period one IC constraints as well as

individual rationality constraints. The conditions on the distribution functions {Fθ}θ=H,M,L

that ensure both single-crossing of δM(ω) and δL(ω), and the “right” order of the crossing

points are known as “regularity conditions.” When these conditions hold, the deterministic

allocations given by the crossing points of δM(ω) and δL(ω) correspond to a solution to (P).

When one of these conditions fails, however, the standard approach fails and is silent about

how to find a solution to (P).

Now we introduce the following modified relaxed problem and use it characterize poten-

tially stochastic solutions to (P) when the standard approach fails. The objective function

and the choice variables are the same as those in the standard relaxed problem, but instead

of unconstrained point-wise maximization, we retain two sets of constraints: the local up-

ward IC constraint ICLM as well as the local downward IC constraints, and the monotonicity

constraints as well as the feasibility constraints on the allocations.5 With xH(ω) = 1ω≥c, our

modified relaxed problem is given by

max
xM (ω),xL(ω)

∫ ω

ω
xM (ω)φMδM(ω)fM(ω)dω +

∫ ω

ω
xL(ω)φLδL(ω)fL(ω)dω. (MRP)

subject to xM(ω) and xL(ω) being non-decreasing functions with values on [0, 1], and ICLM ,

which by the binding ICML is equivalent to

∫ ω

ω
(xM (ω) − xL (ω)) (FL (ω) − FM (ω)) dω ≥ 0. (IC′

LM )

Note that IC′
LM requires that a weighted average of type M ’s allocation xM is greater than

the average of type L’s allocation xL with the same weights.

By imposing IC′
LM , we allow the solution to (MRP) to be either deterministic or stochas-

tic. If the solution is deterministic, then as in the standard approach, it satisfies all dropped

IC constraints and therefore corresponds a solution to (P). It is important to note, however,

5The other local upward IC constraint ICMH is also dropped because we will show later that it is never
binding at any solution to (P) in the main model with only three ex ante types.
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that the solution to (MRP) could be deterministic even though the retained constraint IC′
LM

is binding. In other words, our approach allows us to potentially identify conditions under

which the regularity conditions fail — because IC′
LM is binding — and yet solutions to (P)

remain deterministic (Proposition 1 in the next section). This is one insight we can obtain

with our approach of including IC′
LM in (MRP).

It can be easily verified that any solution to (MRP) satisfies IRH and IRM . A solution

to (MRP) then solves the seller’s problem if it also satisfies the dropped period one IC con-

straints ICHL, ICMH and ICLH . Using the expressions of uθ(ω), θ = L, M, H , from binding

IRL, ICML and ICHM , we find that ICHL, ICMH and ICLH are equivalent to, respectively,

∫ ω

ω
(xM (ω) − xL (ω)) (FM (ω) − FH (ω)) dω ≥ 0, (IC′

HL)

∫ ω

ω
(xH (ω) − xM (ω)) (FM (ω) − FH (ω)) dω ≥ 0, (IC′

MH)

∫ ω

ω
(xH(ω) − xL(ω))(FL(ω) − FM(ω))dω +

∫ ω

ω
(xH(ω) − xM(ω))(FM(ω) − FH(ω))dω ≥ 0.

(IC′
LH)

For future reference, we summarize the above observation in the following lemma. In the

remainder of the paper, by stating that a solution (xL, xM) to (MRP) “corresponds to” a

solution to (P), we mean that (xL, xM) together with xH(ω) = 1ω≥c and tθ, θ = H, M, L,

derived from binding ICML and ICHM , solve (P).

Lemma 1 Any solution to (MRP) that satisfies conditions IC′
HL, IC′

MH and IC′
LH corre-

sponds to a solution to (P).

From now on, we will focus our analysis on (MRP). By using the information we garner

from the solutions to (MRP), we will be able to provide conditions to ensure that a solution

to (MRP) satisfies IC′
HL, IC′

MH , and IC′
LH , and therefore corresponds to a solution to (P).

2.2 An illustrating example

Suppose c = 1, and the conditional distributions are, for ω ∈ [0, ∞),

FL(ω) = 1 − e−ω, FH(ω) = 1 − e−0.7ω, FM(ω) = 1 − 0.4e−ω − 0.6e−0.7ω.
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It is easy to verify that both δL(ω) and δM (ω) cross 0 from below only once. Denote the

crossing point as k̂L and k̂M respectively. Let φL = 0.4; we have k̂L ≈ 1.52. There are three

cases, depending on the value of φH .

(i) For φH = 0.4, we have k̂M ≈ 1.40 < k̂L. This is a regular case in the existing literature.

Deterministic allocations x∗
θ(ω) = 1ω≥k̂θ

, θ = M, L, solve the standard relaxed problem, and

corresponds to a solution to (P).

(ii) For φH = 0.5, we have k̂M ≈ 3.09 > k̂L. The existing approach of point-wise maximiza-

tion fails, because these deterministic allocations violate the upward period one incentive

compatibility constraint, ICLM , or equivalently, IC′
LM . The deterministic solution to (MRP)

forces a common threshold k̂ ≈ 1.76 between k̂L and k̂M on the allocations of types M and L.

Proposition 1 shows this deterministic solution, x∗
θ(ω) = 1ω≥k̂, θ = M, L, is in fact optimal.

(iii) For φH = 0.55, we have we have k̂M ≈ 10.68 > k̂L. Again, point-wise maximization

fails. The deterministic solution to (MRP) has a common threshold of k̂ ≈ 5.20, between k̂L

and k̂M . Proposition 2 constructs stochastic allocations that improve upon this deterministic

solution. We keep type M ’s allocation at xM(ω) = 1ω≥k̂, and choose an interval [a, b] ∋ k̂

for type L so that type L’s allocation xL(ω) remains 0 for ω < a and 1 for ω > b, but is

changed to a constant χL ∈ (0, 1) for ω ∈ [a, b], with the constant level χL binding IC′
LM :

χL

∫ k̂

a
(FL(ω) − FM(ω))dω = (1 − χL)

∫ b

k̂
(FL(ω) − FM(ω))dω.

The change to (MRP) is then

χL

∫ k̂

a
φLδL(ω)fL(ω)dω − (1 − χL)

∫ b

k̂
φLδL(ω)fL(ω)dω.

For a = 2.08, and b = 10, the change is is positive. Thus, the stochastic solution (xM , xL)

improves upon the deterministic solution with the common threshold k̂ in (MRP). Propo-

sition 2 makes assumptions on {Fθ(ω)}θ=H,M,L so that (xM , xL) is feasible in the original

problem, implying that randomization is optimal. Proposition 3 further shows that for these

parameter values, in a solution to (P) type M ’s allocation x∗
M(ω) is deterministic, with

threshold kM ≈ 2.25, while type L’s allocation x∗
L(ω) is stochastic, with support [a∗

L, b∗
L]

where a∗
L ≈ 2.08 and b∗

L = ∞.
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3 Deterministic versus Stochastic Mechanisms

In this section, we characterize when a stochastic mechanism, as opposed to a deterministic

one, is optimal in sequential screening. We use (MRP) defined in Section 2.1 to character-

ize the “optimal deterministic mechanism,” which is profit-maximizing among mechanisms

with deterministic allocation rules. If randomization can strictly improve the seller’s profit

upon the optimal deterministic mechanism, then any solution to (P) is stochastic; otherwise

solutions to (P) are deterministic.

3.1 Optimality of deterministic mechanisms

A deterministic mechanism is given by an allocation rule xθ and transfer rule tθ, θ = H, M, L,

such that there is a threshold kθ for each θ with xθ(ω) = 1ω≥kθ
. We say that xθ(ω) = 1ω≥k∗

θ
,

θ = M, L, is a “deterministic solution” to (MRP), if k∗
M and k∗

L maximize

SM(kM) + SL(kL)

subject to kM ≤ kL, where

Sθ(k) ≡
∫ ω

k
φθδθ(ω)fθ(ω)dω

for each θ = M, L. An optimal deterministic mechanism is a deterministic solution (xθ, tθ),

θ = H, M, L, to (P). The following result is straightforward and the proof is omitted.

Lemma 2 Any deterministic solution to (MRP) corresponds to an optimal deterministic

mechanism.

We assume throughout that, for each θ = M, L, there is a unique maximizer k̂θ of Sθ(k).

If it is interior, k̂θ satisfies the first order necessary condition of δθ(k̂θ) = 0. If k̂M ≤ k̂L,

then the constraint kM ≤ kL is not binding, and k̂M and k̂L are the deterministic solution

to (MRP), and by Lemma 2, correspond to an optimal deterministic mechanism. In fact,

this is the regular case in the existing literature, and xθ(ω) = 1ω≥k̂θ
, θ = M, L, is optimal

overall. A necessary condition for a stochastic mechanism to be optimal is thus k̂M > k̂L.

When k̂M > k̂L, the constraint kM ≤ kL binds at any deterministic solution to (MRP), and
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the solution is given by kM = kL = k̂ for some k̂ ∈ [k̂L, k̂M ].6 When k̂ is interior, it satisfies

the first order necessary condition

φLδL(k̂)fL(k̂) + φMδM(k̂)fM(k̂) = 0. (FOC)

As illustrated in Section 2.2, solutions to (P) may still be deterministic when k̂M > k̂L.

Intuitively, when the solution to (MRP) without IC′
LM violates IC′

LM , the deterministic

mechanism with common threshold k̂ may be optimal because it may be better to bring the

two thresholds together instead of introducing randomization for one or both types.

To formally characterize conditions under which the deterministic mechanism with com-

mon threshold k̂ is optimal, we introduce the average “surplus-to-slack” ratio for type

θ = M, L over any interval [a, b] ⊆ [ω, ω] as

Rθ(a, b) =

∫ b
a φθδθ(ω)fθ(ω)dω

∫ b
a (FL(ω) − FM(ω))dω

.

The numerator of Rθ(a, b) is the total dynamic virtual surplus generated from type θ by

setting xθ(ω) = 1 for ω ∈ [a, b], which can be positive or negative. The denominator of

Rθ(a, b) has two different interpretations depending on θ.7 For RL, it is the total incentive

cost of setting xL(ω) = 1 for ω ∈ [a, b], which arises because this allocation to type L makes

it harder to satisfy IC′
LM . For RM , the denominator represents the total incentive benefit of

setting xM(ω) = 1 for all ω ∈ [a, b], which arises because this allocation to type M makes it

easier to satisfy IC′
LM . In either case, the denominator is always positive and corresponds to

the change in the slack in IC′
LM . Since IC′

LM is equivalent to ICLM given that ICML binds

in (MRP), the denominator of Rθ, and hence the ratio itself, reflects the fact in a dynamic

mechanism design problem, local downward constraints are necessary but not sufficient for

6 If k̂ > k̂M , the value of the objective function could be increased by lowering the threshold for type M

from k̂ to k̂M without violating IC′
LM ; if k̂ < k̂L, the value of the objective function could be increased by

raising the threshold for type L from k̂ to k̂L without violating IC′
LM . In either case we have a contradiction

to the optimality of k̂.
7 When there are more than three ex ante types, or when we take a global approach that incorporates

IC′
HL as well as IC′

LM , the denominator of the relevant surplus-to-slack ratio, or indeed whether any such
ratio is useful at all, depends on which IC constraints are binding. See Section 5 and 6 respectively for more
detailed discussion.
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incentive compatibility.8

The point surplus-to-slack ratio at any ω ∈ [a, b] is defined as

rθ(ω) =
φθδθ(ω)fθ(ω)

FL(ω) − FM(ω)
.

The point ratio at ω is the common limit of the average ratio Rθ(a, ω) from the left and the

average ratio Rθ(ω, b) from the right:

rθ(ω) = lim
a↑ω

Rθ(a, ω) = lim
b↓ω

Rθ(ω, b).

In reverse, we can write Rθ(a, b) as a weighted average of rθ(ω) over ω ∈ [a, b]

Rθ(a, b) =

∫ b
a rθ(ω)(FL(ω) − FM (ω))dw
∫ b

a (FL(ω) − FM(ω))dω
.

Now we use the surplus-to-slack ratio to state our first result: when k̂M > k̂L, if for both

types θ = M, L,

max
a≤k̂

Rθ(a, k̂) ≤ min
b≥k̂

Rθ(k̂, b), (DETθ)

then the deterministic mechanism with common threshold k̂ is optimal.9 We establish the

claim by the method of Lagrangian relaxation. Let λ ≥ 0 be the multiplier associated with

IC′
LM in (MRP), and write the Lagrangian as

L(xM , xL; λ) =
∫ ω

ω
xM (ω) (φMfM(ω)δM(ω) + λ(FL(ω) − FM(ω))) dω

+
∫ ω

ω
xL(ω) (φLfL(ω)δL(ω) − λ(FL(ω) − FM(ω))) dω.

8Thus, our surplus-to-slack ratio has no counterparts in a static mechanism design problem where an
allocation to a type is a real number rather than a function. It is also conceptually different from the profit-
to-rent ratio in Bergemann, Castro, and Weintraub (2020). In their two-type model of sequential screening
with ex post individual rationality constraints, the question is whether a stochastic allocation schedule for
the low type is more profitable than charging the optimal price ex post. There is a single downward incentive
compatibility constraint. The denominator in their ratio is the information rent to the high type, while the
numerator is the static virtual surplus.

9Since max
ω≤k̂

Rθ(ω, k̂) ≥ rθ(k̂) ≥ min
ω≥k̂

Rθ(k̂, ω), condition (DETθ) holds for type θ if and only if

max
ω≤k̂

Rθ(ω, k̂) = rθ(k̂) = min
ω≥k̂

Rθ(k̂, ω). This explains where our guess for the multiplier λ̂ in the proof
of Proposition 1 comes from.
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We choose a particular non-negative value λ̂ for λ, and show that L(xM , xL; λ̂) is maximized

by x∗
θ(ω) = 1ω≥k̂ for each θ = M, L, among all weakly increasing functions xθ(ω).10 Since

λ̂ ≥ 0, the maximal value L(x∗
M , x∗

L; λ̂) is an upper bound of the objective function of

(MRP) for any (xM , xL) that satisfies IC′
LM , and since the maximizers (x∗

M , x∗
L) bind IC′

LM ,

L(x∗
M , x∗

L; λ̂) is just the value of the objective function evaluated at (x∗
M , x∗

L). Therefore, the

deterministic solution given by k̂ solves (MRP). Being deterministic, it satisfies all dropped

constraints IC′
HL, IC′

MH and IC′
LH . By Lemma 1, it corresponds to a solution to (P).

Proposition 1 Suppose k̂M > k̂L and k̂ is interior. If condition (DETθ) holds for both types

θ = M, L, then the deterministic mechanism with common threshold k̂ is optimal.

Proof. Define λ̂ = rL(k̂). We first prove by contradiction that λ̂ ≥ 0. Since k̂ satisfies

(FOC), if λ̂ < 0, then we have rM(k̂) > 0 > rL(k̂). By continuity, there exists w′ < k̂ such

that rM(ω) > 0 for all ω ∈ [w′, k̂], and there exists w′′ > k̂ such that rL(ω) < 0 for all

ω ∈ [k̂, w′′] > 0. The value of the objective function of (MRP) can be improved by changing

the threshold for type M from k̂ to w′ and the threshold for type L from k̂ to w′′. Such

changes satisfy IC′
LM , contradicting the optimality of k̂ as the deterministic solution.

Consider type L part of L(xM , xL; λ̂). By Riley and Zeckhauser (1983), it has a deter-

ministic maximizer in a weakly increasing function xL(ω) with values in [0, 1]. Thus, we only

need to show that

∫ ω

w′

(

φLδL(ω)fL(ω) − λ̂(FL(ω) − FM(ω))
)

dω ≤
∫ ω

k̂

(

φLδL(ω)fL(ω) − λ̂(FL(ω) − FM(ω))
)

dω

for all w′ ∈ [ω, ω]. The above is the same as

RL(a, k̂) ≤ λ̂ ≤ RL(k̂, b)

for all a ≤ k̂ and b ≥ k̂, which is exactly condition (DETL).

10Riley and Zeckhauser (1983) study a monopoly pricing problem, and show that there is always a deter-
ministic solution as an optimal mechanism. See also Myerson (1981) for the same conclusion in an optimal
auction problem when there is a single bidder. These conclusions are a special case of a general result
that there is always a deterministic solution in maximizing a linear functional of a weakly increasing func-
tion. This result is used in a similar way by Bergemann, Castro, and Weintraub (2020) in their analysis of
randomization in sequential screening with ex post individual rationality constraints.
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From the first order necessary condition for k̂, we have λ̂ = −rM(k̂). A symmetric

argument establishes that the type M part of L(xM , xL; λ̂) is maximized by x∗
M (ω) = 1ω≥k̂

among all weakly increasing functions xM (ω). The proposition then follows Lagrangian

relaxation and Lemma 1.

Proposition 1 provides a sufficient condition for deterministic mechanisms to remain

optimal when the regularity condition in the literature fails, that is, when k̂M > k̂L. This

condition is derived from pairwise comparisons of average ratios of dynamic virtual surplus

to information rent associated with IC′
LM . Each pair of ratios are evaluated at an interval

below and an interval above the common threshold k̂ of types M and L when the optimal

deterministic mechanism binds IC′
LM . In particular, solutions to (P) remain deterministic

and is given by k̂ if for both types the average ratio below k̂ is always lower than the point

ratio at k̂ which in turn always exceeds the average ratio above k̂.

3.2 Optimality of stochastic mechanisms

Now we establish sufficient conditions for solutions to (P) to be stochastic. Proposition 1

implies that a necessary condition for randomization is k̂M > k̂L and a failure of condition

(DETθ) for either type θ = M, L. It turns out that this necessary condition is also sufficient

for randomization under mild assumptions on the distributions.

ω
0

ω

xL(ω)

1

k̂L k̂M

k̂a b

χL

Figure 1

We first show that, if condition (DETθ) fails for type θ, we can perturb the allocation

rule for type θ around k̂ to form a stochastic one that does strictly better than the optimal

deterministic mechanism given by k̂ in (MRP). This is illustrated in Figure 1. It can be
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understood as constructing a particular class of perturbations to the deterministic solution

to (MRP) represented by the common threshold k̂ for types M and L. We pick an interval

[a, b] containing k̂ and replace xL(ω), for all ω ∈ [a, b], by χL ∈ (0, 1) which binds IC′
LM .

The profitability of any such perturbation over the deterministic solution k̂, represented by

the reversal of condition (DETL), is then sufficient for randomization to be optimal.

Next, we provide sufficient conditions for the stochastic allocation resulted from the above

perturbation to satisfy the dropped IC constraints IC′
HL, IC′

MH , and IC′
LH , and hence be

feasible in the seller’s original problem. These conditions are on the distribution functions

{Fθ}θ=H,M,L. By first order stochastic dominance, there is a unique “weighting” function

τ(ω) for FM that maps [ω, ω] to [0, 1] such that

FM(ω) = τ(ω)FL(ω) + (1 − τ(ω))FH(ω)

We assume that τ is either non-decreasing or non-increasing, depending on whether (DETθ)

fails for type L or type H . The following lemma demonstrates how we use the monotonicity

condition. The proof is straightforward and omitted.

Lemma 3 If τ is non-decreasing (non-increasing), then for all a < k < b,

∫ k
a (FM(ω) − FH(ω))dω
∫ k

a (FL(ω) − FM(ω))dω
≤ (≥)

∫ b
k (FM(ω) − FH(ω))dω
∫ b

k (FL(ω) − FM(ω))dω
.

Now we are ready to present sufficient conditions for randomization to be part of a

solution to (P).

Proposition 2 Suppose k̂M > k̂L and k̂ is interior. (i) If condition (DETL) fails, then any

solution to (MRP) is stochastic, and if further τ(ω) is non-decreasing, any solution to (P)

is stochastic. (ii) If condition (DETM) fails, then any solution to (MRP) is stochastic, and

if further τ(ω) is non-increasing, any solution to (P) is stochastic.

Proof. (i) Since k̂M > k̂L, the deterministic solution to (MRP) is xM(ω) = xL(ω) = 1ω≥k̂.

By Lemma 2, this deterministic solution is an optimal deterministic mechanism.

Since RL(ω, k̂) and RL(k̂, ω) are continuous in ω, the maximum and the minimum in
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condition (DETL) are attained. Let w′ and w′′ attain the maximum and the minimum

respectively. Then, w′ ≤ k̂ ≤ w′′, with at least one strict inequality. By continuity of

RL(ω, k̂) and RL(k̂, ω) in ω, there exist an interval [a, b] ∋ k̂ such that RL(a, k̂) > RL(k̂, b).

Now, starting with the deterministic allocation xM (ω) = xL(ω) = 1ω≥k̂, we keep xM(ω) for

type M but change allocation for type L to x̂L(ω) as

x̂L(ω) =















χL if ω ∈ [a, b]

xL(ω) if ω 6∈ [a, b]

where

χL ≡

∫ b
k̂
(FL(ω) − FM(ω))dω

∫ b
a (FL(ω) − FM(ω))dω

.

is chosen to bind IC′
LM . Since a < k̂ < b, we have χL ∈ (0, 1). The change in the value of

the objective function in (MRP) is

χL

∫ k̂

a
φLδL(ω)fL(ω)dω − (1 − χL)

∫ b

k̂
φLδL(ω)fL(ω)dω.

With the expression of χL, the above has the same sign as RL(a, k̂) − RL(k̂, b), which is

positive. Thus, (xM , x̂L) is a stochastic allocation that gives a greater value for the objective

function of (MRP) than the deterministic solution xM (ω) = xL(ω) = 1ω≥k̂. It follows that

any solution to (MRP) is stochastic.

Given that xH(ω) = 1ω≥c and xM(ω) = 1ω≥k̂ with k̂ > k̂L > c, (x̂L, xM) satisfies IC′
MH .

Further, since RL(w′, k̂) ≥ rL(k̂) > 0, we can always choose a such that a > c, implying that

(x̂L, xM) also satisfies IC′
LH . Finally, for IC′

HL, since (x̂L, xM) binds IC′
LM , we have

χL

∫ k̂

a
(FL(ω) − FM(ω))dω = (1 − χL)

∫ b

k̂
(FL(ω) − FM(ω))dω.

By Lemma 3, the above implies IC′
HL. Thus, (xM , x̂L) corresponds to a feasible mechanism in

(P). Since it a generates a strictly higher revenue than the optimal deterministic mechanism

corresponding to (xM , xL), we conclude that solutions to (P) must be stochastic.

(ii) The proof to (ii) is symmetric and is omitted.
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Combining Proposition 1 and Proposition 2, we have established the necessary and suffi-

cient conditions for randomization to be optimal. Given that k̂M > k̂L so that the standard

approach of point-wise maximization fails, (DETθ) for θ = M, L prove to be the critical

conditions that determine whether a solution to (P) involves stochastic allocations.

In proving the sufficiency of the failure of condition (DETθ) for randomization, we use a

particular perturbation of the optimal deterministic mechanism by introducing randomiza-

tion in the allocation for one type over an internal [a, b] ⊆ [ω, ω]. These particular pertur-

bations are by themselves generally suboptimal. However, in next section we will show that

other members of the simple class of stochastic mechanisms that the perturbations belong

to are in fact optimal.

4 Optimal Randomization

In this section, we will use (MRP) to characterize randomization in the solution to (P).

The analysis adapts ironing techniques used in standard mechanism design problems (e.g.,

Fudenberg and Tirole (1991)). As we aim for a characterization of solutions to (P) under

additional assumptions on the design problem, which may or may not involve randomization,

we will not directly connect these assumptions to the necessary and sufficient conditions for

randomization in Propositions 1 and 2 until after we present the main result in this section.

We first show that there is always a solution to (MRP) with at most one level of stochastic

allocation for types M and L. That is, for each type θ = M, L, if xθ(w), xθ(w
′) ∈ (0, 1) then

xθ(w) = xθ(w′). This is because both the objective function and the constraint IC′
LM are

linear functionals of non-decreasing schedules xθ. Similarly, there is always a solution to

(MRP) where randomization occurs only for one of the two types M and L, because there is

a single constraint IC′
LM for two non-decreasing allocation functions xM and xL. The proof is

a standard application of Theorem 1 of Luenberger (1969) (p. 217) to (MRP), which states

that, if (x∗
L(ω), x∗

M(ω)) solves for modified relaxed problem, then there exists a multiplier

λ ≥ 0 for IC′
LM with complementary slackness, such that for each θ = M, L, x∗

θ(ω) maximizes

L(xM , xL; λ) among all weakly increasing xθ(ω) with values in [0, 1] for all ω ∈ [ω, ω].11

11 To apply the Luenberger Theorem, we need to show that the feasible set in (MRP) contains some
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Lemma 4 There is a solution (x∗
L(ω), x∗

M(ω)) to (MRP) such that: (i) for each θ = M, L,

x∗
θ(ω) =



























0 if ω ∈ [ω, a)

χ if ω ∈ [a, b)

1 if ω ∈ [b, ω]

for some ω ≤ a ≤ b ≤ ω and χ ∈ (0, 1); (ii) for θ = L or θ = M , or both, x∗
θ(ω) = 0 or 1

for all ω ∈ [ω, ω].

Using Lemma 4, and slightly abusing notation, we denote the allocation x∗
θ(ω) in a

solution to (MRP) as χ
[a,b]
θ . This notation includes deterministic allocations for type θ as

special cases, with a = b, or χθ = 0, 1. Lemma 4 implies that, if randomization occurs in a

solution to (MRP), then there is always a solution (x∗
L, x∗

M ) that randomization occurs for

only one type and for only one non-degenerate interval [a, b].

4.1 A characterization of optimal mechanisms

We start by characterizing possible candidates of solution (x∗
L, x∗

M) to (MRP). Each x∗
θ,

θ = M, L, is considered separately, allowing deterministic allocations x∗
θ(ω) = 1ω≥k for some

k ∈ (ω, ω) and stochastic allocations χ[a,b] for some [a, b] ⊆ [ω, ω] and χ ∈ (0, 1). The possible

candidates x∗
θ depend on the shape of the point surplus-to-slack ratio rθ.

Suppose that x∗
θ(ω) = χ[a,b] with some [a, b] ⊆ [ω, ω] and χ ∈ (0, 1) is part of a solu-

tion to (MRP). By the Luenberger Theorem, since we can increase or decrease χ to affect

the Lagrangian L(x∗
M , x∗

L; λ) without violating the monotonicity constraint on x∗
θ, we have,

depending on θ = L or θ = M ,

RL(a, b) = λ or RM(a, b) = −λ.

Next, we can always increase a to affect the Lagrangian, and if a > ω, we can also decrease

(xM , xL) that satisfies IC′
LM strictly. This is clearly true.
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it. Similarly, we can always decrease b, and if b < ω, we can also increase it. As a result,

rL(a) ≥ λ ≥ rL(b) or rM(a) ≥ −λ ≥ rM(b),

with rθ(a) = Rθ(a, b) if a > ω and rθ(b) = Rθ(a, b) if b < ω.

The above conditions for x∗
θ(ω) = χ[a,b] to be part of a solution to (MRP) cannot be

satisfied if rθ(ω) is strictly increasing in [a, b]. Indeed, if rθ(ω) is strictly increasing for all

ω ∈ [ω, ω], then x∗
θ(ω) is deterministic in any solution (x∗

L, x∗
M) to (MRP). For simplicity

we impose a restriction on the shape of rθ that will be shown to imply a unique candidate

for the interval [a, b] at which x∗
θ(ω) is strictly between 0 and 1 as part of solution (x∗

L, x∗
M)

to (MRP). We assume that rθ is either strictly increasing in the entire support, or “single

dipped,” in that it has a “peak” at ωp
θ and a “trough” at ωt

θ satisfying ω ≤ ωp
θ < ωt

θ ≤ ω, such

that rθ is strictly increasing in [ω, ωp
θ ] and in [ωt

θ, ω], and strictly decreasing in (ωp
θ , ωt

θ). See

Figure 2 for an illustration where both ωp
θ and ωt

θ are interior. For any r ∈ [rθ(ω
t
θ), rθ(ω

p
θ)],

let αθ(r) ∈ [ω, ωp
θ ] such that rθ(αθ(r)) = r, and set αθ(r) = ω if rθ(ω) > r. This is the

inverse of rθ on the strictly increasing interval [ω, ωp
θ ]. Symmetrically, let βθ(r) ∈ [ωt

θ, ω]

be the inverse of rθ on the strictly increasing interval [ωt
θ, ω], satisfying rθ(βθ(r)) = r and

βθ(r) = ω if rθ(ω) < r. By definition, αθ(ω
p
θ) = ωp

θ , and βθ(ω
t
θ) = ωt

θ. The following result is

straightforward and the proof is omitted.

rθ(ω)

ω ωω
p
θ

ωt
θ

r∗
θ

a∗
θ b∗

θ

Figure 2
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Lemma 5 Suppose that rθ(ω) is single dipped. The difference Rθ(αθ(r), βθ(r)) − r crosses

0 once and from above on the interval r ∈ [rθ(ω
t
θ), rθ(ω

p
θ)].

By Lemma 5, there is a unique r∗
θ ∈ (rθ(ω

t
θ), rθ(ω

p
θ)), together with a∗

θ ≡ αθ(r
∗
θ) ∈ [ω, ωp

θ ]

and b∗
θ ≡ βθ(r∗

θ) ∈ [ωt
θ, ω], such that

rθ(a
∗
θ) ≥ Rθ(a∗

θ, b∗
θ) = r∗

θ ≥ rθ(b
∗
θ),

with rθ(a
∗
θ) = r∗

θ if a∗
θ > ω, and rθ(b

∗
θ) = r∗

θ if b∗
θ < ω. See Figure 2. It follows from

the argument at the beginning of this subsection that if part of a solution to (MRP) is

x∗
θ(ω) = χ[a,b], then a = a∗

θ and b = b∗
θ.

Conversely, if part of a solution to (MRP) is x∗
θ(ω) = 1ω≥k for some interior k, we argue by

contradiction that k 6∈ (a∗
θ, b∗

θ). By the Luenberger Theorem, since we can increase or decrease

k to affect the Lagrangian L(x∗
M , x∗

L; λ) without violating the monotonicity constraint on x∗
θ,

rL(k) = λ or rM(k) = −λ.

Given this, for any k ∈ (a∗
θ, b∗

θ), we can always find a < k with RL(a, k) > rL(k) or b > k

with RL(k, b) < rL(b), so that changing x∗
θ from 1ω≥k to either 1ω≥a or to 1ω≥b increases

the Lagrangian, contradicting the Luenberger Theorem. The existence of such a and b is

immediate for k ∈ (ωp
θ , ωt

θ), as rθ(ω) is strictly decreasing in (ωp
θ , ωt

θ). By Lemma 5, for

k ∈ (a∗
θ, ωp

θ ], we can choose b = βθ(rθ(k)) as rθ(k) > r∗
θ , and for k ∈ [ωt

θ, b∗
θ), we can choose

a = αθ(rθ(k)) as rθ(k) < r∗
θ .

Now we are ready to present our main characterization result on optimal stochastic

mechanisms. We make two symmetric sets of assumptions on rM and rL in order to apply

Lemma 4 and Lemma 5 to rule out randomization for one type and possibly rule in ran-

domization for the other. When randomization occurs for type L, we denote the solution

as (x∗
L, x∗

M) = (χ
[a∗

L
,b∗

L
]

L ,1ω≥kM
), where [a∗

L, b∗
L] is the unique candidate interval implied by

Lemma 5 for type L, and χL binds IC′
LM . The assumptions we make on rM and rL introduce

cross-type restrictions that allow us to use Lagrangian relaxation and the Riley-Zeckhouser

result in a similar way as in the proof of Proposition 1, and show that the candidate allo-
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cations lead to a solution to (MRP). Finally, the monotonicity restriction on the weighting

function τ ensures that the solution satisfies the dropped IC constraints in (P) in the same

way as in the proof of Proposition 2.

Proposition 3 (i) Suppose that rM(ω) is strictly increasing and rL(ω) is single dipped. If

RL(a∗
L, b∗

L) > 0 and there exists some kM ∈ (a∗
L, b∗

L) such that rM(kM) = −RL(a∗
L, b∗

L), then

(x∗
L, x∗

M) = (χ
[a∗

L
,b∗

L
]

L ,1ω≥kM
) solves (MRP); otherwise, any solution to (MRP) is determinis-

tic. Further, if τ(ω) is non-decreasing, any solution to (MRP) corresponds to a solution to

(P). (ii) Suppose rL is strictly increasing and rM is single dipped. If RM(a∗
L, b∗

L) < 0, and

there is kL ∈ (a∗
M , b∗

M) such that rL(kL) = −RM (a∗
L, b∗

L), then (x∗
L, x∗

M ) = (1ω≥kL
, χ

[a∗

M
,b∗

M
]

M )

solves (MRP); otherwise, any solution to (MRP) is deterministic. Further, if τ(ω) is non-

increasing, any solution to (MRP) corresponds to a solution to (P).

Proof. (i) We will consider separately each type θ = M, L part of L(xM , xL; λ̂), with

λ̂ = −rM (kM). By Riley and Zeckhouser (1983), each type θ part has a deterministic

maximizer among all weakly increasing xθ(ω) with the range in [0, 1]. It suffices to show

that the proposed x∗
θ generates a greater value for type θ part of L(xM , xL; λ̂) than any 1ω≥k.

For type M , for all k ∈ [ω, ω], since rM(ω) is strictly increasing, we have

∫ ω

k

(

φMfM(ω)δM(ω) + λ̂(FL(ω) − FM(ω))
)

dω ≤
∫ ω

kM

(rM(ω) − rM(kM)) (FL(ω)−FM(ω))dω.

The right-hand side of the above inequality is precisely type M part of L(x∗
M , x∗

L; λ̂).

For type L, consider first k < a∗
L. This is relevant only if a∗

L > ω. Since rL is single dipped,

rL(k) < rL(a∗
L) for all k < a∗

L, and by Lemma 5, rL(a∗
L) = RL(a∗

L, b∗
L). By assumption,

λ̂ = RL(a∗
L, b∗

L). Then,

∫ ω

k

(

φLδL(ω)fL(ω) − λ̂(FL(ω) − FM(ω))
)

dω <
∫ ω

a∗

L

(rL(ω) − rL(a∗
L)) (FL(ω) − FM(ω))dω.

The right-hand side of the above inequality is precisely type L part of L(x∗
M , x∗

L; λ̂). A

symmetric argument applies to all k > b∗
L. For the remaining case of k ∈ [a∗

L, b∗
L], since rL(ω)

is single dipped, by Lemma 5, we have RL(a∗
L, b∗

L) = r∗
L, and rL(k) − r∗

L crosses 0 from above
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exactly once as k goes from a∗
L to b∗

L. Given that λ̂ = RL(a∗
L, b∗

L),

∫ ω

k

(

φLδL(ω)fL(ω) − λ̂(FL(ω) − FM(ω))
)

dω =
∫ ω

k
(rL(ω) − r∗

L) (FL(ω) − FM(ω))dω

is maximized by k = a∗
L or by k = b∗

L, either of which yields type L part of L(x∗
M , x∗

L; λ̂).

Since x∗
M (ω) = 1ω≥kM

x∗
L(ω) = χ

[a∗

L
,b∗

L
]

L and maximize L(xM , xL; λ̂) among all weakly

decreasing xM and xL, as in the proof of Proposition 1, (x∗
M , x∗

L) solves (MRP) by Lagrangian

relaxation. As in the proof of Proposition 2, (x∗
M , x∗

L) satisfies IC′
HL and IC′

MH . By Lemma

3, it also satisfies IC′
LH because τ(ω) is non-decreasing. By Lemma 1, it corresponds to a

solution to (P).

Now suppose that there is a stochastic solution (x̃M , x̃L) to (MRP). By Lemma 5, we

have x̃M(ω) = 1ω≥k̃M
for some k̃M , and x̃L(ω) = χ̃

[a∗

L
,b∗

L
]

L for some χ̃L ∈ (0, 1). By Lu-

enberger’s Theorem, there is a multiplier λ ≥ 0 for IC′
LM with complementary slackness,

such that among all non-decreasing functions with values on [0, 1], (x̃L(ω), x̃M(ω)) maxi-

mizes L(xM , xL; λ). This is impossible if λ = 0, as we would have x̃θ(ω) = 1ω≥kθ
for each

θ = M, L, which is deterministic instead of stochastic. Thus, λ > 0 and by complementary

slackness, IC′
LM binds, implying that a∗

L < k̃M < b∗
L. Since k̃M is interior to [a∗

L, b∗
L], and

hence can be increased or decreased while still maintaining the monotonicity constraint of

x̃M(ω), Luenberger’s Theorem implies that rM(k̃M) = −λ. Similarly, since χ̃L ∈ (0, 1), and

hence can be increased or decreased while still maintaining the monotonicity constraint of

x̃L(ω), Luenberger’s Theorem implies that RL(a∗
L, b∗

L) = λ. Thus, when the conditions stated

in the proposition fail, the solution to the modified simplified problem is deterministic. Since

a deterministic solution satisfies IC′
HL, IC′

MH and IC′
LH , the proposition immediately follows

from Lemma 1.

(ii) The proof is symmetric to that of part (i) and is omitted.

Our main characterization result Proposition 3 can be extended to the case where both

rM and rL are single dipped. By Lemma 4, there is always a solution to (MRP) with ran-

domization for only one of the two types, but Lemma 5 implies that there are two candidate

intervals [a∗
L, b∗

L] and [a∗
M , b∗

M ] for stochastic allocation to take place. To establish that ran-

domization for type L is optimal in (MRP), for example, we need to use Lemma 5 to rule in
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[a∗
L, b∗

L] as well as to rule out [a∗
M , b∗

M ]. To go from a solution (x∗
L, x∗

M), whether stochastic or

deterministic, to a solution to (P), we make the simplifying assumption that τ(ω) is constant

for all ω ∈ [ω, ω]. The proof of the following corollary to Proposition 3 is straightforward

and omitted.

Corollary 1 Suppose that rM and rL are both single dipped. If RL(ω, ω) > 0 and there is

kM ∈ (a∗
L, b∗

L) \ (a∗
M , b∗

M) such that rM(kM) = −RL(ω, ω), then (x∗
L, x∗

M) = (χ
[a∗

L
,b∗

L
]

L ,1ω≥kM
)

solves (MRP); if RM (ω, ω) < 0 and there exits some kL ∈ (a∗
M , b∗

M) \ (a∗
L, b∗

L) such that

rL(kL) = −RM(ω, ω), then (x∗
L, x∗

M) = (1ω≥kL
, χ

[a∗

M
,b∗

M
]

M ) solves (MRP); otherwise, any solu-

tion to (MRP) is deterministic. Further, if τ(ω) is constant for all ω ∈ [ω, ω], any solution

to (MRP) corresponds to a solution to (P).

Under the assumptions on the shapes of rL and rM , we have provided necessary and

sufficient conditions for stochastic solutions to (MRP), and hence to (P) under the addi-

tional monotonicity assumption on τ . We now argue that Proposition 3 is consistent with

Proposition 1 and Proposition 2. In particular, if RL(a∗
L, b∗

L) > 0, rM is strictly increasing,

and there is kM ∈ (a∗
L, b∗

L) such that rM(kM) = −RL(a∗
L, b∗

L), then k̂M > k̂L and condition

(DETL) is violated for type L. For simplicity, we assume that a∗
L > ω and b∗

L < ω.

To see that k̂M > k̂L, note that since rM(kM) < 0, rM is strictly increasing and kM > a∗
L,

we have k̂M > kM > a∗
L. We claim that k̂L < a∗

L. Write the surplus of type L as a function

of the threshold as

SL(k) =
∫ ω

k
rL(ω)(FL(ω) − FM(ω))dω.

Assume that there exist a < a∗
L and b ∈ [ωt

L, b∗
L) such that rL(a) = rL(b) = 0, where ωt

L

is the interior trough of rL, so that a and b are the only two local maximizers of SL(k).12

This means that αL(0) = a and βL(0) = b. Since r∗
L = RL(a∗

L, b∗
L) > 0, Lemma 5 implies

RL(a, b) > 0. Then, SL(a) − SL(b) is given by

∫ b

a
rL(ω)(FL(ω) − FM (ω))dω = RL(a, b)

∫ b

a
(FL(ω) − FM(ω))dω > 0.

12Since r∗
L(ω) is strictly decreasing on [ωp

L, ωt
L], no local maximizer of SL can be located on the interval.

If rL(ωt
L) > 0, then immediately we have the claim that k̂L < a∗

L.
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It follows that k̂L = a < a∗
L < k̂M .

To see that condition (DETL) fails, note that since rL(ω) is increasing for any ω ≤ a∗
L,

kM > a∗
L with rM(kM) = −rL(a∗

L), and rM is strictly increasing, we have

rL(ω) + rM(ω) < rL(a∗
L) + rM(a∗

L) = −rM(kM) + rM(a∗
L) < 0, ∀ω ≤ a∗

L

rL(ω) + rM(ω) > rL(b∗
L) + rM(b∗

L) = −rM (kM) + rM(b∗
L) > 0, ∀ω ≥ b∗

L.

By (FOC), we have k̂ ∈ (a∗
L, b∗

L). If k̂ ∈ (ωp
L, ωt

L), then (DETL) is clearly violated since

rL(ω) is strictly decreasing in ω ∈ (ωp
L, ωt

L). If k̂ ∈ (a∗
L, ωp

L], then Lemma 5 implies that

rL(k̂) > RL(k̂, βL(rL(k̂))) because rL(k̂) > r∗
L. By continuity, (DETL) fails. Symmetrically,

(DETL) fails for k̂ ∈ (ωt
L, b∗

L].

4.2 Randomization for the low type

In order to apply Proposition 3 to analyze specific examples, it is often useful to provide

sufficient conditions under which optimal randomization occurs only for type L. To do so, we

make two additional assumptions. Specifically, we assume that (i) τ(ω) = τ for all ω ∈ [ω, ω];

and (ii) fH(ω)/fL(ω) is strictly increasing in ω. We refer to the combination of conditions

(i) and (ii) as “strong alignment.”

By condition (i) we have

RM(w, w′) =

∫ w′

w φM(ω − c)fM(ω)dω
∫ w′

w (FL(ω) − FM(ω))dω
−

τφH

1 − τ
,

RL(w, w′) =

∫ w′

w φL(ω − c)fL(ω)dω
∫ w′

w (FL(ω) − FM (ω))dω
− (φM + φH),

for any w ≤ w′. By condition (ii),

fM(ω)

fL(ω)
<

fM(ŵ)

fL(ŵ)
<

fM(ω′)

fL(ω′)

for any ω < ŵ < ω′. Thus, if RM (w, ŵ) > RM(ŵ, w′) for some c < w < ŵ < w′, then

RL(w, ŵ) > RL(ŵ, w′). It follows that for sufficiently small c, whenever the sufficient con-

dition for randomization is satisfied for type M , that is, condition (DETM) fails, it is also
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satisfied for type L. The following result shows that, in fact, for c ≤ ω, whenever a solution

to (P) involves randomization for type M , it must also involve randomization for type L.

Proposition 4 Suppose c ≤ ω. Under strong alignment, if no deterministic mechanism is

optimal, then it is optimal to randomize the allocation for type L only.

Proof. Suppose that there is no deterministic mechanism that is optimal, but that there

is a solution to (P) with randomization for type M only. By strong alignment, there is

no deterministic solution to (MRP), and there is a solution (x∗
M , x∗

L) where x∗
M is random

but x∗
L is deterministic. By part (i) of Lemma 4, we can assume that x∗

M (ω) = χ
[a,b]
M and

x∗
L(ω) = 1ω≥kL

. By Luenberger’s Theorem,
(

χ
[a,b]
M ,1ω≥kL

)

maximizes L(xM , xL; λ) for some

λ ≥ 0 among all weakly increasing allocations for type M and type L.

First, we claim that λ > 0. Suppose instead λ = 0. Then, since χM ∈ (0, 1), we have

∫ b

a
φMδM (ω)fM(ω)dω = 0.

It follows that replacing x∗
M(ω) = χ

[a,b]
M with 1ω≥a does not change the value of the objective

function in (MRP). Since the allocation for type M is weakly increased for all valuations,

IC′
LM remains satisfied. This contradicts the optimality of (x∗

M , x∗
L), and establishes that

λ > 0. By complementary slackness, IC′
LM binds, which implies that kL ∈ (a, b) and that

χM is given by

χM =

∫ b
kL

(FL(ω) − FM(ω))dω
∫ b

a (FL(ω) − FM(ω))dω
.

Next, we claim that RM(a, kL) ≥ RM(kL, b). Suppose not. Then by replacing x∗
M (ω)

with 1ω≥kL
, we continue to bind IC′

LM , and the total change in the objective function of

(MRP) is given by

−χM

∫ kL

a
φMδM(ω)fM(ω)dω + (1 − χM)

∫ b

kL

φMδM (ω)fM(ω)dω,

which is strictly positive because RM(a, kL) < RM(kL, b).

Since c ≤ ω ≤ a, under condition (ii) of strong alignment, RM(a, kL) ≥ RM (kL, b) implies

RL(a, kL) > RL(kL, b). Then, by replacing x∗
L(ω) with χM(a, b), we continue to bind IC′

LM ,

26



and the total change in the objective function of (MRP) is given by

χM

∫ kL

a
φLδL(ω)fL(ω)dω − (1 − χM)

∫ b

kL

φLδL(ω)fL(ω)dω,

which is strictly positive because RL(a, kL) > RL(kL, b). This contradicts the assumption

that (x∗
M , x∗

L) is a solution to (MRP).

Proposition 4 does not rule out the possibility that there is a solution to (P) with ran-

domization for both type M and type L. By part (ii) of Lemma 4, in this case there is

another solution to (P) with randomization for at most one of the two types. Proposition 4

then implies that these other solutions necessarily involve randomization for type L only.

5 An Extension

We extend our analysis of stochastic sequential screening mechanisms to more than three ex

ante types. Let Θ = {1, . . . , I} with I ≥ 3, be the ex ante type space, ranked by first order

stochastic dominance, with type 1 being the lowest type, fi(·) and Fi(·) being the conditional

density and conditional distribution of valuations respectively, i ∈ Θ. Let φi > 0 being the

fraction of type i, with
∑

i∈Θ φi = 1.

As in Section 2.1, we write the seller’s problem as choosing a non-decreasing allocation

rule xi (ω), with values on [0, 1], and an integration constant ui(ω) for each i ∈ Θ, to solve

max
(xi(·),ui(ω))

∑

i∈Θ

φi

(

∫ ω

ω
xi(ω) ((ω − c)fi(ω) − (1 − Fi(ω))) dω − ui(ω)

)

, (PΘ)

subject to, for each i ∈ Θ, and each j ∈ Θ and j 6= i

ui (ω) +
∫ ω

ω
xi (ω) (1 − Fi (ω)) dω ≥ 0, (IRi)

ui (ω) +
∫ ω

ω
xi (ω) (1 − Fi (ω)) dω ≥ uj (ω) +

∫ ω

ω
xj (ω) (1 − Fi (ω)) dω, (ICi,j)

0 ≤ xi(ω) ≤ 1. (FEi)

The standard approach is to assume that the binding constraints are the lowest individual
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rationality constraint IR1 and each local downward incentive compatibility constraint ICi,i−1,

i = 2, . . . , I. By substitutions one can then remove each ui(ω) as a choice variable, and form

an unconstrained relaxed problem of choosing allocation xi (ω), with values on [0, 1], for each

i ∈ Θ, to solve

max
(xi(·))

∑

i∈Θ

∫ ω

ω
xi(ω)φiδi(ω)fi(ω)dω, (RPΘ)

where δi(ω) is the dynamic virtual surplus function of type i = 1, . . . , I − 1, given by

δi(ω) = ω − c −

∑I
j=i+1 φj

φi

Fi(ω) − Fi+1(ω)

fi(ω)
,

with δI(ω) = ω − c. Point-wise maximization leads to deterministic allocations xi(ω), but

this approach fails if xi(ω) fails to be increasing for some i, or if xi(ω) < xj(ω) for some

i > j and some ω.

5.1 Necessary and sufficient conditions for randomization

As in the main model of three types, our approach is instead based on a modified relaxed

problem. We drop all non-local IC constraints in period one, that is, all ICi,j with |i−j| ≥ 2.

Using first order stochastic dominance ranking, it is then straightforward to show that IR1

and each local downward ICi,i−1 for i = 2, . . . , I bind. First, IR1 binds. If not, we can

lower ui(0) for all i = 1, . . . , I by the same marginal amount. None of the local downward

or upward IC’s are affected. IR1 still holds because it was slack; IR2 is still slack because

it is implied by IC2,1 and IR1; and by induction IRi for each higher i is still slack. This

is a contradiction, establishing that IR1 binds at any solution, and also IRi is slack for all

i ≥ 2. Second, each local downward ICi,i−1 binds. Start with the highest type I. If ICI,I−1

is slack, we can reduce uI(0) by a marginal amount. This only impacts IRI and ICI,I−1.

Since IRI is slack by the first step, we have a contradiction. Now suppose ICj,j−1 binds for

all j = i + 1, . . . , I, and ICi,i−1 is slack. We can reduce ui(0) and all uj(0), j = i + 1, . . . , I,

by the same marginal amount. All local downward and upward IC’s continue to hold. Since

IR’s are all strict except for type 1, we have a contradiction, establishing that each ICi,i−1

binds binds at any solution to (PΘ).
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Using the binding constraints ICi,i−1, we can formulate the modified relaxed problem,

with the same objective and choice variables as in (PΘ) but with two sets of constraints.

With xI(ω) = 1ω≥c, the modified relaxed problem is choosing xi(ω), i = 1, . . . , I − 1, to

maximize
∑

i≤I−1

∫ ω

ω
xi(ω)φiδi(ω)fi(ω)dω, (MRPΘ)

subject to each xi(·), i = 1, . . . , I − 1, is non-decreasing with the range of [0, 1], and each

local upward ICi,i+1, which by the binding ICi+1,i, is equivalent to

∫ ω

ω
(xi+1(ω) − xi(ω))(Fi(ω) − Fi+1(ω))dω ≥ 0. (IC′

i,i+1)

The counterpart of Lemma 1 holds: any solution to (MRPΘ) solves the original problem

if it satisfies the dropped non-local period one IC constraints. With more than three types,

we extend condition (i) of the strong alignment assumption introduced earlier in Section 4.2:

fi(ω) = (1 − τi)fI(ω) + τif1(ω) (A)

with 1 = τ1 > τ2 > . . . > τI = 0. Under condition (A), any non-local incentive compatibility

constraint is implied by a chain of local ones in the same direction and a single constraint

in the opposite direction: for all i ≥ j + 2, the downward incentive compatibility constraint

ICi,j is implied ICi,i−1, ... , ICj+1,j, and ICj,j+1, for all i ≤ j − 2, the upward incentive

compatibility constraint ICi,j is implied ICi,i+1, ... , ICj−1,j, and ICj,j−1. Thus, under (A),

any solution to (MRPΘ) solves (P). Moreover, we can rewrite the objective of (MRPΘ) and

all IC′
i,i+1 using a single function F1(ω) − FI(ω). Define the average ratio of surplus-to-slack

for i = 1, . . . , I − 1 as

Ri(w, w′) =

∫ w′

w φiδi(ω)fi(ω)dω
∫ w′

w F1(ω) − FI(ω)dω

for all w < w′, and the corresponding point ratio as

ri(ω) =
φiδi(ω)fi(ω)

F1(ω) − FI(ω)
.
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Let (ŵi)i∈Θ be the deterministic solution to (MRPΘ):

max
(wi)i∈Θ

∑

i∈Θ

∫ ω

wi

φiδi(ω)fi(ω)dω,

subject to that wi is weakly decreasing in i. The following generalizes Propositions 1 and 2.

Proposition 5 Suppose that condition (A) holds. (i) If

max
ω≤ŵi

Ri(ω, ŵi) ≤ min
ω≥ŵi

Ri(ŵi, ω), (DETi)

for all i ∈ Θ, then (ŵi)i∈Θ corresponds to a solution to (P). (ii) If (DETi) fails for any i,

then any solution to (P) is stochastic.

We provide a sketch of the proof here. To establish the necessary conditions for ran-

domization, suppose that (DETi) holds for all i. Since (ŵi)i∈Θ is a deterministic solution to

(MRPΘ), there exist multipliers λ̂i,i+1 ≥ 0, each for wi ≥ wi+1, i = 1, . . . , I − 1, satisfying

complementary slackness, such that the first order necessary conditions hold:

ri(ŵi) = λ̂i,i+1 − λ̂i−1,i. (FOCi)

Define the following Lagrangian using λ̂i,i+1 ≥ 0 as the multiplier associated with IC′
i,i+1 in

(MRPΘ) for each i = 1, . . . , I − 1:

L((xi); (λ̂i,i+1)) =
∑

i∈Θ

∫ ω

ω
xi(ω)

(

φiδi(ω)fi(ω) − (λ̂i,i+1 − λ̂i−1,i)(F1(ω) − FI(ω))
)

dω.

When condition (DETi) holds for each i, by continuity and (FOCi),

Ri(a, ŵi) ≤ ri(ŵi) = λ̂i,i+1 − λ̂i−1,i ≤ Ri(ŵi, b)

for all a ≤ ŵi ≤ b. Following the same steps of the proof of Proposition 1, we can show that

the above inequalities imply that x∗
i (ω) = 1ω≥ŵi

, i ∈ Θ, maximizes L((xi); (λ̂i,i+1)) among all

non-decreasing functions with values on [0, 1]. Since (x∗
i )i∈Θ is deterministic, by Lagrangian

relaxation, it solves (PΘ). Thus, a necessary condition for randomization is that condition
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(DETi) fails for some i.

For the sufficiency for randomization when (DETi) fails for some i,13 we can find any

a < ŵi < b such that Ri(a, ŵi) > Ri(ŵi, b), and replace 1ω≥ŵi
with χ

[a,b]
i , where χi satisfies

χi

∫ ŵi

a
(F1(ω) − FI(ω))dω = (1 − χi)

∫ b

ŵi

(F1(ω) − FI(ω))dω.

Due to condition (A), neither IC′
i,i+1 nor IC′

i−1,i is affected, but the change in the value of

type i part of the objective function of (MRPΘ) is

χi

∫ ŵi

a
φiδi(ω)fi(ω)dω − (1 − χi)

∫ b

ŵi

φiδi(ω)fi(ω)dω,

which is strictly positive since Ri(a, ŵi) > Ri(ŵi, b). Thus, the solution to (MRPΘ) is

stochastic. Under condition (A), any solution to (PΘ) must also be stochastic.

Without condition (A), in general the necessary and sufficient conditions for randomiza-

tion cannot be expressed in terms of a surplus-to-slack ratio. Specifically, the counterpart of

(DETi) can be shown to be

max
a≤wi

∫ ŵi

a

(

φiδi(ω)fi(ω)dω − λ̂i,i+1(Fi(ω) − Fi+1(ω)) + λ̂i−1,i(Fi−1(ω) − Fi(ω))
)

dω ≤ 0,

min
b≥ŵi

∫ b

ŵi

(

φiδi(ω)fi(ω)dω − λ̂i,i+1(Fi(ω) − Fi+1(ω)) + λ̂i−1.i(Fi−1(ω) − Fi(ω))
)

dω ≥ 0.

If ŵi−1 > ŵi = ŵi+1 so that λ̂i−1,i = 0, the above two conditions can be combined and

expressed in terms of a surplus-to-slack ratio for type i, using Fi − Fi+1 to measure the rent;

the result is precisely condition (DETL) in the main model with three types. If ŵi−1 = ŵi >

ŵi+1, then λ̂i,i+1 = 0, and the above condition can also be expressed in a surplus-to-slack

ratio for type i, using Fi−1 − Fi instead; this is precisely condition (DETM) in the main

model. However, when λi,i+1, λi−1,i > 0, which implies ŵi−1 = ŵi = ŵi+1, it is not possible

to state the above two conditions for type i in terms of a single surplus-to-slack ratio.

13Consistent with Proposition 2, this cannot happen if neither of the two constraints ŵi+1 ≤ ŵi ≤ ŵi−1 is
binding at the solution. To see this claim, note that if neither constraint is binding, then Si(ŵi) ≥ Si(wi) for

all wi. For all a ≤ ŵi we have Si(a)−S(ŵi) = R(a, ŵi)
∫ ŵi

a
(F1(ω)−FI(ω))dω. This implies that R(a, ŵi) ≤ 0

for all a ≤ ŵi. Similarly, R(ŵi, b) ≥ 0 for all b ≥ ŵi. The claim follows.
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5.2 Optimal mechanisms

With more than three types and more than a single upward incentive compatibility con-

straint, characterizing optimal stochastic mechanisms becomes more involved, but most of

our characterization results generalize, at least partially, to provide restrictions we can use

to construct optimal stochastic mechanisms. Part (i) of Lemma 4 continues to hold: ran-

domization occurs at more than one level strictly between 0 and 1 for each type i ∈ Θ, and

so without loss we can write the solution to (MRPΘ) as
(

χ
[a∗

i
,b∗

i
]

i

)

i∈Θ
.14 Part (ii) of Lemma 4

does not generally hold, as randomization can occur for more than one type in any solution

to (MRPΘ); indeed we will construct one such example in Appendix A.15

As in the main model of three types, no solution to (MRPΘ) can have randomization for

some type i ∈ Θ with a support a subset of an interval (w, w′) over which i’s point ratio ri

is strictly increasing; and in any solution i’s allocation is constant on any interval (w, w′)

over which ri is strictly decreasing.16 Further, the characterization of candidate solutions

to (MRP) by Lemma 5 completely generalizes. If type i = 1, . . . , I − 1 has a point ratio of

surplus-to-slack function ri that is single dipped, then there exist unique a∗
i < b∗

i satisfying

ri(a
∗
i ) ≥ Ri(a

∗
i , b∗

i ) ≥ ri(b
∗
i ),

and a∗
i ≥ ω and b∗

i ≤ ω, both with corresponding complementary slackness, such that, at any

solution to (MRPΘ), the interval where randomization occurs is [a∗
i , b∗

i ] if x∗
i is stochastic,

and the threshold ki lies outside of [a∗
i , b∗

i ] if x∗
i is deterministic.

Although the general idea of using Lagrangian relaxation to construct a solution to

(MRPΘ) is applicable in specific examples, extending Proposition 3 requires additional infor-

14 The argument is simply noting that we can treat the difference in multipliers λi−1,i − λi,i+1 as a single
multiplier in the proof of part (i) of Lemma 4.

15 The proof of part (ii) of Lemma 4 can be partially generalized: if at some solution
(

χ
[a∗

i
,b∗

i
]

i

)

i∈Θ
there

exist some i1, i2 ∈ Θ with i2 ≥ i1 + 1 such that IC′
i1−1,i1

and IC′
i2,i2+1 are both slack, and λi,i+1 > 0 for all

i = i1, . . . , i2 − 1, then the value of (MRPΘ) does not depend on χi, i = i1, . . . , i2. However, in general we
no longer have the freedom to change the values of χi to reduce the number of random allocations between
i1 and i2, because changing χi for any i = i1, . . . , i2 can violate IC′

i,i+1 and/or IC′
i,i−1.

16 Even though the allocation of type i affects two upward constraints IC′
i,i+1 and IC′

i−1,i (if i ≥ 2 and
i ≤ I − 1), under condition (A) the effects are the same. This implies that whenever we switch type i’s
allocation xi(ω) from a random one to a deterministic one, or vice versa, so long as we keep as fixed the
weight average of xi(ω), neither of the two upward constraints is unaffected.
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mation about the shape of each point ratio of surplus-to-slack ri and the structure of binding

upward constraints. Here, we generalize the strong alignment assumption introduced in Sec-

tion 4. Suppose that (i) condition (A) holds, and (ii) fI(ω)/f1(ω) is strictly increasing for

all ω ∈ [ω, ω]. Then, ri(ω) ≥ ri(ω
′) for any ω > ω′ > c implies that ri′(ω) > ri′(ω′) for all

i, i′ ∈ Θ with i′ ≥ i + 1. Under the assumption that ri(ω) is single dipped for each i ∈ Θ,

with (ωp
i , ωt

i) being the largest interval over which ri(ω) is strictly decreasing, if c = ω, then

the intervals are all ordered by type, so that ωp
i′ ≥ ωp

i with strict inequality if ωp
i > ω, and

ωt
i′ ≤ ωt

i with strict inequality if ωt
i < ω. These results can help us make the correct guesses

about the values of the multipliers in order to apply the argument of Proposition 3. This will

be illustrated in Appendix A with the class of examples with explicit distribution functions.

Under strong alignment with c = ω, the argument in Proposition 4 can be extended

to more than three types. We can show that randomization for any type i = 2, . . . , I at

a solution to (PΘ) implies we cannot have both a deterministic allocation for i − 1 and a

binding IC′
i−1,i. This suggests that randomization occurs in “clusters,” where each cluster

of adjacent types has binding upward constraints among them, and clusters are separated

from each other. See Appendix A for an illustration of this idea.

6 Discussion

Our approach based on the modified relaxed problem is local. In (MRP) with three ex ante

types, we keep IC′
LM , the equivalent of the local upward incentive compatibility constraint

ICLM , and drop IC′
HL, the equivalent of the global downward constraint ICHL.17 To establish

the sufficient condition for randomization in solutions to the original problem (P), in the proof

of Proposition 2 we rely on restrictions on the distribution functions {Fθ}θ=H,M,L, because a

solution to (P) may not solve (MRP). In particular, when the sufficient condition (DETL)

for deterministic solutions fails for type L, we construct a solution (xM , x̂L) to (MRP) with

randomization for type L that binds IC′
LM , but we need FM to be “increasingly aligned with”

FL (the weighting function τ(ω) to be non-decreasing) in order to conclude that (xM , x̂L)

satisfies IC′
HL and is thus feasible in (P). If instead FM is decreasingly aligned with FL,

17We also drop IC′
MH and IC′

LH , but they are never binding at any solution to (MRP).
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(xM , x̂L) violates IC′
HL. Even though any solution to (MRP) has to be stochastic, we cannot

conclude the same for (P).

An alternative to the local approach is to keep global as well as local IC constraints.

In the main model with three ex ante types, this global approach leads to a constrained

maximization problem (GP) that shares with (MRP) the same objective, the same choice

variables xM and xL, which are non-decreasing with values in [0, 1], and the same local

upward constraint IC′
LM , but keeps all other IC constraints, including, in particular, the

global downward constraint IC′
HL. We claim that if the solution (xθ (ω) , uθ(ω))θ=H,M,L to

(P) is deterministic, then (xM , xL) solves (GP).18 This claim can be established from the

following straightforward steps: first, IRL binds at any solution to (P); second, either ICML

or ICHL binds, or both bind at any solution to (P); third, if ICML binds and ICHL is slack

at any solution to (P), then ICHM binds; fourth, if ICML binds and ICHL is slack at any

solution (xθ (ω) , uθ(ω)) to (P), then (xM , xL) solves (GP); fifth, if the solution to the original

problem is deterministic, then at the solution ICML binds and ICHL is slack.

After we identify (GP) using the global approach, we can now extend Proposition 2.

Suppose the solution (xθ (ω) , uθ(ω)) to (P) is deterministic. We have xL(ω) = xM (ω) = 1ω≥k̂

for some k̂. Consider part (i), with randomization for type L, fixing xM = 1ω≥k̂ (part (ii)

can be similarly extended). If there exists a random allocation x̂L = χ
[a,b]
L with χL ∈ (0, 1),

a < k̂ and b > k̂, satisfying both IC′
LM and IC′

HL

− χL

∫ k̂

a
(FL(ω) − FM(ω))dω + (1 − χL)

∫ b

k̂
(FL(ω) − FM(ω))dω ≥ 0,

− χL

∫ k̂

a
(FM(ω) − FH(ω))dω + (1 − χL)

∫ b

k̂
(FM(ω) − FH(ω))dω ≥ 0,

such that the value of the objective of (GP) is increased

χL

∫ k̂

a
φLδL(ω)fL(ω)dω − (1 − χL)

∫ b

k̂
φLδL(ω)fL(ω)dω > 0,

then we have a contradiction to the assumption that (xM , xL) solves (GP).19 This then

18 This claim does not hold for (MRP), because we have dropped IC′
HL in (MRP). Even though IC′

HL is
slack at the solution (xθ (ω) , uθ(ω))θ=H,M,L to (P), (xM , xL) does not necessarily solve (MRP).

19 It suffices to show that (x̂L, xM ) satisfies IC′
MH and IC′

LH . Since xH(ω) = 1ω≥c ≥ xM (ω) = 1

ω≥k̂
for all
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establishes that the solution to (P) is stochastic.

The above conditions for the existence of x̂L can be expressed in terms of surplus-to-slack

ratios as in Proposition 2 as follows, but because both IC′
LM and IC′

HL are present in (GP),

we have two different ratios for type L. Suppose that k̂M > k̂L and k̂ is interior. If there

exist a ≤ k̂ and b ≥ k̂ such that

∫ k̂
a φLδL(ω)fL(ω)dω

∫ k̂
a (FL(ω) − FM(ω))dω

>

∫ b
k̂

φLδL(ω)fL(ω)dω
∫ b

k̂
(FL(ω) − FM(ω))dω

(RANL)

∫ k̂
a φLδL(ω)fL(ω)dω

∫ k̂
a (FM (ω) − FH(ω))dω

>

∫ b

k̂
φLδL(ω)fL(ω)dω

∫ b

k̂
(FM(ω) − FH(ω))dω

, (RAN′
L)

then changing the allocation for type L from 1ω≥k̂ to χ
[a,b]
L for any χL ∈ (0, 1) such that

max







∫ k̂
a (FL(ω) − FM(ω))dω
∫ b

k̂
(FL(ω) − FM (ω))dω

,

∫ k̂
a (FM (ω) − FH(ω))dω
∫ b

k̂
(FM(ω) − FH(ω))dω







<
1 − χL

χL

<

∫ k̂
a φLδL(ω)fL(ω)dω
∫ b

k̂
φLδL(ω)fL(ω)dω

improves the value of the objective of (GP) while satisfying both IC′
LM and IC′

HL. It follows

that any solution to (P) is stochastic. With condition (RANL) just the reverse of (DETL),

and a new condition (RAN′
L), the above generalizes Proposition 2. When τ is non-decreasing,

by Lemma 3 condition (RANL) implies (RAN′
L), and so we have Proposition 2. When τ

is strictly increasing, Proposition 2 does not apply because the random allocation x̂L con-

structed in the proof violates IC′
HL, but solutions to (P) can still be stochastic when condition

(RAN′
L) holds because by Lemma 3 it implies (RANL). More generally, conditions (RANL)

and (RAN′
L) are sufficient for solutions to (P) to be stochastic, without any restrictions on

the distributions beyond first order stochastic dominance ranking.

Appendix A. Examples

In this section, we explicitly solve (P) for a class of sequential screening problems. We use

them illustrate the results from both the main model with three ex ante types in Section 4

ω, IC′
MH is satisfied. For IC′

LH , we note that since by assumption (xθ (ω) , uθ(ω)) solves (P) with xM = 1

ω≥k̂
,

we have δL(k̂) ≥ 0. As a result, we can assume that a > c, and thus xH(ω) = 1ω≥c ≥ xL(ω) = χ
[a,b]
L for all

ω and IC′
LH is satisfied.
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and the extension with more than three types in Section 5. Since the model in Section 4 is a

special case of the model in Section 5, we use the latter, and specialize to three types when

necessary.

For all ω ∈ [0, ∞), let

fi(ω) = γie
−γiω,

for i = 1 and i = I ≥ 3, with γ1 > γI > 0, and for each i = 1, . . . , I let

fi(ω) = (1 − τi)γIe
−γI ω + τiγ1e

−γ1ω

for some τi ∈ [0, 1], with 1 = τ1 > τ2 > . . . > τI = 0. The resulting class of distributions

{Fi(ω)}i=1,...,I satisfies conditions (i) and (ii) of strong alignment. We have δI(ω) = ω − c,

and for each i = 1, . . . , I − 1,

δi(ω) = ω − c −
(τi − τi+1) (e−γI ω − e−γ1ω)

∑I
i′=i+1 φi′

((1 − τi)γIe−γI ω + τiγ1e−γ1ω) φi

,

ri(ω) =
φi(ω − c) ((1 − τi)γIe

−γI ω + τiγ1e
−γ1ω)

e−γIω − e−γ1ω
− (τi − τi+1)

I
∑

i′=i+1

φi′.

It is straightforward to verify that ri(0) = −∞ and dri(0)/dω = ∞ if c > 0, and if c = 0,

ri(0) =
φi((1 − τi)γI + τiγ1)

γ1 − γI

− (τi − τi+1)
I
∑

i′=i+1

φi′,

dri(0)

dω
=

φi

2
((1 − τi)γI − τiγ1).

Also, r1(∞) = −(1 − τ2)(1 − φ1), and ri(∞) = ∞ for i = 2, . . . , I − 1. We first derive two

claims we need for explicit characterizations of solutions to (P).

Claim 2 For each i = 1, . . . , I − 1, ri(ω) is single dipped. Further, if c = 0, then r1(ω) is

strictly decreasing, and for any i = 2, . . . , I − 1 there exists a strictly positive and finite ωt
i

such that ri(ω) is strictly decreasing for any ω < ωt
i and strictly increasing for any ω > ωt

i. If

c > 0, then there exists a strictly positive and finite ωp
1 such that r1(ω) is strictly increasing

for any ω < ωp
1 and strictly decreasing for any ω > ωp

1, and ri(ω) is strictly increasing in ω

if (1 − τi)γI ≥ τiγ1.
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Proof. By taking derivatives, we can show that dri(ω)/dω has the same sign as

(1 − τi)γI

(

e(γ1−γI)ω − 1
)

+ τiγ1

(

1 − e−(γ1−γI )ω
)

− (γ1 − γI)((1 − τi)γI + τiγ1)(ω − c).

Thus, dr1(ω)/dω > 0 if and only if

1 − e−(γ1−γI )ω > (γ1 − γI)(ω − c).

The left-hand side is strictly concave in ω, with a derivative equal to γ1 − γI at ω = 0. It

follows that if c = 0, then dr1(ω)/dω < 0 for all ω, and if c > 0, there exists a strictly

positive and finite ωp
1 which equates the two sides of the inequality above, such that r1(ω) is

strictly increasing for any ω < ωp
1 and strictly decreasing for any ω > ωp

1.

Next, fix any i = 2, . . . , I − 1. At any ω̂ such that dri(ω̂)/dω = 0, the sign d2ri(ω̂)/dω2

is the same as

(1 − τi)γIe
(γ1−γI )ω̂ + τiγ1e

−(γ1−γI)ω̂ − ((1 − τi)γI + τiγ1).

The sign of the above is the same as

(1 − τi)γIe
(γ1−γI)ω̂ − τiγ1.

Thus, the sign of d2ri(ω̂)/dω2 at any ω̂ such that dri(ω̂)/dω = 0 can only change from

negative to positive. It follows that ri(ω) is single dipped. If c = 0, then since dri(0)/dω < 0

and ri(∞) = ∞, and since ri(ω) is single dipped, ri(ω) has a unique interior trough. If c > 0,

then (1 − τi)γI ≥ τiγ1 implies that d2ri(ω̂)/dω2 > 0 at any ω̂ such that dri(ω̂)/dω = 0. As a

result, ω̂ is a local minimum of ri(ω). Since dri(0)/dω = ∞, and since ri(ω) is single dipped,

it cannot have a local minimum without having a local maximum. This is a contradiction,

and it follows there is no ω̂ such that dri(ω̂)/dω = 0 when (1 − τi)γI ≥ τiγ1. Thus, ri(ω) is

strictly increasing in ω.

For each i = 1, . . . , I − 1, the total dynamic virtual surplus of type i under a threshold
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allocation rule 1ω≥k is given by

Si(k) =
∫ ∞

k
ri(ω)

(

e−γI ω − e−γ1ω
)

dω.

The following claim provides a characterization of Si(k). Let k̂i be the smallest maximizer

of Si(k), i = 1, . . . , I − 1. We have that dSi(k)/dk has the same sign as −ri(k). At any ω̂

such that dSi(ω̂)/dω = 0, the sign of d2Si(ω̂)/dk2 is the same as −dri(ω̂)/dk.

Claim 3 If c = 0, then k̂1 = 0 when S1(0) ≥ 0 and k̂1 = ∞ otherwise, and for each

i = 2, . . . , I − 1, k̂i is uniquely defined by ri(k̂i) = 0 and dri(k̂i)/dω > 0 when Si(k̂i) ≥ Si(0),

and k̂i = 0 otherwise. If c > 0, then k̂1 = ∞ when r1(ωp
1) ≤ 0, and is otherwise uniquely

defined by r1(k̂1) = 0 and dr1(k̂1)/dω > 0, and k̂i is uniquely defined by ri(k̂i) = 0 for any i

such that (1 − τi)γI ≥ τiγ1.

Proof. Suppose that c = 0. By Claim 2, since r1(ω) is strictly decreasing, S1(k) has no

interior local maximum. It follows that S1(k) is maximized at either k̂1 = 0 or k̂1 = ∞.

Since S1(∞) = 0, the maximum is either attained at k̂1 = 0 if S1(0) ≥ 0, or else at k̂1 = ∞.

For any i = 2, . . . , I − 1, by Claim 2, since ri(ω) has a unique interior trough at ωt
i , there

are three cases. If ri(ω
t
i) ≥ 0, then Si(k) is strictly decreasing for all k. The maximum of

Si(k) is reached at k̂i = 0. If ri(0) < 0, then since dri(0)/dω < 0 and ri(∞) = ∞, there

exists a unique ŵ strictly positive and finite, satisfying ri(ŵ) = 0 with dri(ŵ)/dω > 0, such

that Si(k) is strictly increasing for all k ∈ (0, ŵ) and strictly decreasing for all k > ŵ. The

maximum of Si(k) is reached at k̂i = ŵ. If ri(ω
t
i) < 0 ≤ ri(0), then there is a unique ŵ > ωt

i

such that ri(ŵ) = 0, with dri(ŵ)/dω > 0. In this case ŵ is a local maximizer of Si(k). The

maximum of Si(k) is reached at k̂i = ŵ if Si(ŵ) ≥ Si(0) and otherwise at k̂i = 0.

Suppose that c > 0. By Claim 2, r1(ω) has a unique interior peak at some ωp
1. If

r1(ω
p
1) ≤ 0, then S1(k) is increasing for all k, and is therefore maximized at k̂1 = ∞.

Otherwise, by Claim 2 there exists a unique ŵ such that r1(ŵ) = 0 and dr1(ŵ)/dω > 0. It

follows that S1(k) is maximized at k̂1 = ŵ. For any i = 2, . . . , I − 1, by Claim 2, r1(ω) is

strictly increasing in ω when (1 − τi)γI ≥ τiγ1. Since ri(0) = −∞ and ri(∞) = ∞, there

exists a unique ŵ such that ri(ŵ) = 0. It follows that Si(k) is maximized at k̂i = ŵ.
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Now we are ready to illustrate explicitly constructed solutions to (P) through a series of

examples. For the first two examples, we have I = 3. We revert back to the notation of H , M

and L. So type I becomes type H , and type 1 becomes type L, with τ ∈ (0, 1) representing

the weight on fL in fM . The first example provides a straightforward application of part (i)

of Proposition 3.

Example 1: I = 3 and c > 0. We assume (1 − τ)γH ≥ τγL. By Claim 3, rM(k̂M) = 0, and

rL(k̂L) ≤ 0 and k̂L ≤ ∞, with complementary slackness.

First, suppose that k̂M ≤ k̂L. This corresponds to the regular case that the existing

literature focuses on. The solution to (P) is deterministic, with threshold allocation for all

three types: the threshold is c for type H , k̂M for type M , and k̂L for type L.

Second, suppose instead k̂M > k̂L. This requires k̂L < ∞ and thus rL(ωp
L) > 0, where

ωp
L is the unique interior peak of rL by Claim 2. The deterministic solution k̂ to (MRP) is

uniquely determined by rL(k̂) + rM(k̂) = 0, and is strictly between k̂L and k̂M . By Claim 2,

rM is strictly increasing because (1 − τ)γH ≥ τγL. Lemma 5 then implies that, if there is a

stochastic solution to (MRP) then randomization occurs only for type L. By Claim 2, rL(ω)

has a unique interior peak at ωp
L with rL(0) = −∞ and rL(∞) = 0. By Lemma 5, in any

stochastic solution (x∗
M , x∗

L) to (MRP), the support of type L’s random allocation x∗
L(ω) is

given by [a∗
L, ∞), with a∗

L uniquely defined by

RL(a∗
L, ∞) = rL(a∗

L),

implying that rL(a∗
L) > 0 and so a∗

L ∈ (k̂L, ωp
L). Part (i) of Proposition 3 then establishes

that if there exists kM > a∗
L such that

rM(kM) = −RL(a∗
L, ∞) = −rL(a∗

L),

then x∗
L(ω) = χ

[a∗

L
,∞)

L and x∗
M(ω) = 1ω≥kM

solve (MRP), with

χL =

∫∞
kM

(FL(ω) − FM (ω))dω
∫∞

a∗

L

(FL(ω) − FM(ω))dω
,

and thus corresponds to an optimal stochastic mechanism. Since rM is strictly increasing,
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such kM exists if and only if

rL(a∗
L) + rM(a∗

L) < 0.

If the above condition is violated, there is no stochastic solution to (MRP). The solution is

deterministic with a common threshold k̂, and the solution to (P) is deterministic. We have

an example where solutions to (P) are deterministic even though the unconstrained solution

to (P) violates IC′
LM . �

Our second example assumes c = 0 and uses Proposition 4 and Lemma 5 to pin down

a unique candidate solution to (MRP) when the unconstrained solution violates IC′
LM . We

then apply Corollary 1 to establish a sufficient condition to validate the candidate solution

and thus correspond to an optimal stochastic mechanism.

Example 2: I = 3 and c = 0. By Claim 3, we have k̂L = 0 if SL(0) ≥ 0, and otherwise

k̂L = ∞. For type M , by Claim 2, there is a unique minimizer ωt
M of rM(ω). By Claim 3, a

sufficient condition for k̂M to be interior is rM(0) < 0.

First, suppose that k̂L = ∞, or k̂L = k̂M = 0. This is a regular case in the existing

literature. The solution to (P) is deterministic, with threshold allocation for all three types:

the threshold is 0 for type H , k̂M for type M , and k̂L for type L.

Second, suppose that k̂L = 0 and k̂M > 0. If k̂ > 0, then since rL(ω) is strictly decreasing

by Claim 2, Proposition 2 implies that any solution to (MRP) is stochastic. If k̂ = 0,

Proposition 2 does not apply, and the solution to (MRP) may be stochastic, or deterministic

given by x∗
M(ω) = x∗

L(ω) = 1ω≥0. By Proposition 4, if randomization occurs in any solution

to (P), it occurs for type L and takes the form of x∗
L(ω) = χ

[a∗

L
,b∗

L
]

L and x∗
M(ω) = 1ω≥kM

. By

Lemma 5, since rL(ω) is strictly decreasing, a∗
L = 0 and b∗

L = ∞. Further, since rM has a

unique interior trough and rM(∞) = ∞, we have a∗
M = 0 and b∗

M is uniquely defined by

rM(b∗
M ) = RM(0, b∗

M).

Since k̂L = 0, we have SL(0) ≥ SL(∞) = 0, and thus RL(0, ∞) ≥ 0. By Corollary 1, if there

exists kM ≥ b∗
M such that

rM(kM) = −RL(0, ∞),
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then x∗
L(ω) = χ

[0,∞)
L and x∗

M (ω) = 1ω≥kM
solve (MRP), with

χL =

∫∞
kM

(FL(ω) − FM (ω))dω
∫∞

0 (FL(ω) − FM(ω))dω
,

and thus corresponds to an optimal stochastic mechanism. Since rM(ω) is strictly increasing

for ω > b∗
M , the above condition is equivalent to

RL(0, ∞) + rM(b∗
M ) ≤ 0.

If RL(0, ∞) + rM(b∗
M) > 0, then there is no stochastic solution to (MRP), and x∗

M(ω) =

x∗
L(ω) = 1ω≥0 correspond to a solution to (P). �

The third example below illustrates what we call randomization clusters with I = 4 and

c = 0. We construct a solution to (P) where types 1 and 2 have random allocations while

types 3 and 4 have deterministic allocations. To do so, we first use Lemma 5 to propose

the unique candidate solution to (MRP) that is consistent with this randomization cluster.

We then apply the same Lagrangian relaxation method used in Proposition 3 and Corollary

1 to establish a sufficient condition for the candidate solution to solve (MRP) and thus

correspond to optimal stochastic mechanisms.

Example 3: I = 4 and c = 0. We consider a solution (x∗
i (ω))i=1,2,3 to (MRP) of the form

x∗
i (ω) = χ

[ai,bi]
i for i = 1, 2, and x∗

3(ω) = 1ω≥k3
. By Claim 2, r1(ω) is strictly decreasing,

and both r2(ω) and r3(ω) have a unique interior trough. It follows from Lemma 5 that

a1 = a∗
1 = 0 and b1 = b∗

1 = ∞, a2 = a∗
2 = 0 and b2 = b∗

2, and k3 ≥ b∗
3 with a∗

3 = 0, where b∗
i is

uniquely defined by

ri(b
∗
i ) = Ri(0, b∗

i )

for each i = 2, 3. As we have argued in Section 5, since a∗
2 = a∗

3, we have b∗
2 > b∗

3. We claim

that if R1(0, ∞) ≥ 0, R1(0, ∞) + r2(b∗
2) ≥ 0, and

−r3(a∗
2) < R1(0, ∞) + r2(b∗

2) ≤ −r3(b∗
3),

then there is a unique value of k3, together with some χ1, χ2 ∈ (0, 1), such that x∗
1(ω) = χ

[0,∞)
1 ,
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x∗
2(ω) = χ

[0,b∗

2
]

2 , and x∗
3(ω) = 1ω≥k3

form a solution to (MRP), and hence to (P).

The claim is established by a generalization of the Lagrangian relaxation argument in

Proposition 3. Since r3(ω) is strictly increasing for ω ≥ b∗
3 with r3(∞) = ∞, under the stated

conditions there exists a unique k3 ∈ [b∗
3, b∗

2) such that

R1(0, ∞) + r2(b∗
2) + r3(k3) = 0.

We choose the multipliers as follows: λ2,1 = R1(0, ∞) and λ3,2 = R1(0, ∞) + r2(b
∗
2). By

assumption, λ2,1, λ3,2 ≥ 0. With these values of the multipliers, we argue that for each

type i = 1, 2, 3, the given allocation x∗
i (ω) maximizes the part of the Lagrangian function

associated with type i among all weakly increasing functions xi(ω) with the range of [0, 1].

For type 1, with λ2,1 = R1(0, ∞), the argument is the same as for Corollary 1. For type 2,

with R2(0, b∗
2) = r2(b

∗
2) = λ3,2 − λ2,1, the argument is the same as in Proposition 3. Finally,

for type 3, with λ3,2 = R1(0, ∞) + r2(b
∗
2) = −r3(k3) and k3 ≥ b∗

3, the argument is the same

for Corollary 1. The claim is then established by noting that since k3 < b∗
2, we can find

values of χ1 and χ2 to bind IC′
1,2 and IC′

2,3:

χ1 =

∫∞
k3

(F1(ω) − F4(ω))dω
∫∞

0 (F1(ω) − F4(ω))dω
, χ2 =

∫ b∗

2

k3
(F1(ω) − F4(ω))dω

∫ b∗

2

0 (F1(ω) − F4(ω))dω
.

By complementary slackness, the value of the Lagrangian function achieved by the proposed

solution x∗
1(ω) = χ

[0,∞)
1 , x∗

2(ω) = χ
[0,b∗

2
]

2 , and x∗
3(ω) = 1ω≥k3

is feasible in (MRP). It follows

that the proposed solution solves (MRP), and thus corresponds to a solution to (P). �

Appendix B. Proof of Lemma 4

(i) We establish the lemma for type L; the proof for type M is the same. We first show

that there is a solution to (MRP) where x∗
L(ω) is piece-wise constant. Suppose instead that

x∗
L(ω) is continuously strictly increasing for all ω ∈ (w′, w′′). We claim that the integrand of

L(xM , xL; λ), given by

φLδL(ω)fL(ω) − λ(FL(ω) − FM(ω))
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is zero for all ω ∈ (w′, w′′). To see this, note that if it is strictly positive at some ŵ ∈ (w′, w′′),

we can find a neighborhood (ŵ − ǫ, ŵ + ǫ) of ŵ for some ǫ > 0 such that the integrand is

strictly positive for all ω ∈ (ŵ − ǫ, ŵ + ǫ). But then by changing x∗
L(ω) for all ω in the

neighborhood to its highest value x∗
L(ŵ + ǫ) at ŵ + ǫ we can strictly increase the value of

L(xM , xL; λ), which contradicts Luenberger’s Theorem. A similar argument applies if the

integrand is strictly negative at any ω ∈ (w′, w′′). By the Intermediate Value Theorem, there

is a ŵ ∈ (w′, w′′) such that

∫ w′′

w′

x∗
L(ŵ)(FL(ω) − FM(ω))dω =

∫ w′′

w′

x∗
L(ω)(FL(ω) − FM(ω))dω.

Since the integrand is zero for all ω ∈ (w′, w′′), we have

∫ w′′

w′

x∗
L(ω)φLδL(ω)fL(ω)dω =

∫ w′′

w′

x∗
L(ŵ)φLδL(ω)fL(ω)dω.

Thus, the value of the part of the objective function associated with x∗
L(ω) for ω ∈ (w′, w′′)

is unchanged if we replace x∗
L(ω) with x∗

L(ŵ) for all ω ∈ (w′, w′′).

Next, we show that there is a solution where there is at most one intermediate value of

x∗
L(ω) strictly between 0 and 1. Suppose instead that there exist w′, ŵ and w′′, such that

x∗
L(ω) = χ for ω ∈ (w′, ŵ) and χ′ for ω ∈ (ŵ, w′′), with x∗

L(w−) < χ < χ′ < x∗
L(w′′+). Con-

sider changing x∗
L(ω) for ω ∈ (w′, ŵ) by some small amount ǫ, and simultaneously changing

x∗
L(ω) for ω ∈ (ŵ, w′′) by some other small amount ǫ′, such that IC′

LM is unchanged:

ǫ
∫ ŵ

w′

(FL(ω) − FM(ω))dω + ǫ′

∫ w′′

ŵ
(FL(ω) − FM(ω))dω = 0.

The change in the value of the objective function of (MRP) is given by

ǫ
∫ ŵ

w′

φLδL(ω)fL(ω)dω + ǫ′

∫ w′′

ŵ
φLδL(ω)fL(ω)dω.

Since both ǫ > 0 > ǫ′ and ǫ < 0 < ǫ′ are feasible perturbations, and since x∗
L(ω) is optimal,

we must have

RL(w′, ŵ) = RL(ŵ, w′′).

43



Then there is also a solution to (MRP) with one fewer intermediate value strictly between 0

and 1, by setting ǫ and ǫ′ such that χ + ǫ = χ′ + ǫ′.

(ii) By part (i) above, (MRP) always has a solution in the form of (χ
[a,b]
L , χ

[a′,b′]
M ). Suppose

that a < b, a′ < b′, χL ∈ (0, 1) and χM ∈ (0, 1). Then, by Luenberger’s Theorem, since

x∗
θ(ω) maximizes L(xM , xL; λ) among all non-decreasing xθ(·), for each θ = M, L, we have

the first order condition

∫ b′

a′

(φMδM(ω)fM(ω) + λ(FL(ω) − FM(ω))) dω =
∫ b

a
(φLδL(ω)fL(ω) − λ(FL(ω) − FM(ω))) dω = 0.

The objective of (MRP) evaluated at the solution (χ
[a,b]
L , χ

[a′,b′]
M ) is

χM

∫ b′

a′

φMδM(ω)fM(ω)dω+
∫ ω

b′

φMδM(ω)fM(ω)dω+χL

∫ b

a
φLδL(ω)fL(ω)dω+

∫ ω

b
φLδL(ω)fL(ω)dω.

If λ = 0 at the solution, then by the first order condition the objective function is

independent of the values of χM and χL. We can change χM to 1, which keeps IC′
LM

satisfied, because the allocation of type M is weakly increased for all ω. Thus, there is also

a solution where the allocation for type M is deterministic.

If λ > 0, then by complementary slackness, IC′
LM is binding. By the first order condition,

the objective function is again independent of the values of χM and χL. As a result, if we

replace either χM or χL with 0 or 1, then so long as IC′
LM holds, the resulting allocations,

which have randomization for at most one type, yield the same value for the objective

function of (MRP). Since IC′
LM is binding, the set [a, b] ∩ [a′, b′] has a positive measure.

Then, there are four cases we need to consider: i) a ≤ a′ < b′ ≤ b, ii) a′ ≤ a < b′ ≤ b, iii)

a′ ≤ a < b ≤ b′, and iv) a ≤ a′ < b ≤ b′. For i), IC′
LM is satisfied with either χ̃M = 1 and

χ̃L =

∫ b
a′ (FL (ω) − FM (ω)) dω
∫ b

a (FL (ω) − FM (ω)) dω
∈ (0, 1] ,

or χ̃M = 0 and

χ̃L =

∫ b
b′ (FL (ω) − FM (ω)) dω
∫ b

a (FL (ω) − FM (ω)) dω
∈ [0, 1) .
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For case ii), IC′
LM is satisfied with χ̃M = 0 and

χ̃L =

∫ b
b′ (FL (ω) − FM (ω)) dω
∫ b

a (FL (ω) − FM (ω)) dω
∈ [0, 1) ,

or χ̃L = 1 and

χ̃M =

∫ b′

a (FL (ω) − FM (ω)) dω
∫ b′

a′ (FL (ω) − FM (ω)) dω
∈ (0, 1] .

Case iii) is symmetric to case i), and case iv) is symmetric to case ii), both with roles of the

types switched. The lemma follows immediately.
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