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Abstract

We study mechanism design under stochastic participation. A seller of a single

indivisible good faces buyers with symmetric independent private values. Each buyer

has an independent probability of not participating in the seller’s mechanism, and to

sell to “non-participants” the seller must randomly select one of them to make a take-

it-or-leave-it offer. A buyer who is able to participate (“participant”) can however

behave like a non-participant. We show that in any optimal mechanism there is an

interval of valuations such that all participants with valuations in the interval are

given an equal allocation priority as non-participants. Optimal mechanisms can be

implemented as an auction where bids in the interval are not distinguished and pooled

with non-participants, together a fixed-price offer to a buyer in the pool when there are

no distinguishable bids higher than the interval. Participants in the pool always accept

their offers, while non-participants may not. This offers an explanation of why fixed

prices instead of auctions are used more often than needed to sell to non-participants.
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1 Introduction

Advances of technologies have made online auctions increasingly accessible to buyers. Proxy

bidding, by asking buyers to submit a maximum bid and letting a computer run an automatic

ascending auction, allows a buyer to participate without paying constant attention. However,

some buyers continue to find auctions “inconvenient” and do not participate in them. Indeed,

the fraction of such non-participants is not only significant, but has also increased in recent

years (Einav, Farronato, Levin and Sundaresan, 2018). For sellers, how to run auctions

without giving up on non-participants is a practical problem. In this paper we argue that

solution to this problem has implications to observed online auctions.

We study a problem for a seller of a single indivisible good facing a fixed number of buyers

with symmetric independent private values, where each buyer has an independent probability

of not participating in the seller’s mechanism. We call this “mechanism design with stochas-

tic participation.” If the seller cannot reach non-participants, stochastic participation would

not have any impact and standard auctions are optimal. To highlight implications of non-

participants to auction design, we assume that to sell to “non-participants” the seller must

randomly select one of them to make a take-it-or-leave-it offer. As in standard mechanism

design problems, the seller commits to a mechanism at the interim stage after valuations are

privately realized and the participation status of a given buyer is privately revealed indepen-

dently of their valuations. A buyer who is able to participate in bidding (“participant”) can

however behave like a non-participant. This creates a “one-sided” incentive compatibility

constraint for buyers with any given valuation for the good, but for participants only. It is

the one novel feature in mechanism design with stochastic participation.

In an auction for participants, the prospect of making a fixed-price offer to non-participants

gives the seller a stochastic outside option. The incentive problem this outside option cre-

ates is that participants can exploit this option by pretending to be a non-participant. By

the revelation principle, we can assume that the seller’s fixed-price offer is made only to

“truthful” non-participants. Then, the choice of the fixed-price offer determines not only

the expected value of this outside option to the seller, but also how high the reserve price

can be to incentivize participants with low valuations to bid in the auction. In particular,
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under the assumption that the revenue from a fixed-price offer is concave in the offer, which

implies the monopoly price is equal to the optimal reserve price (Myerson, 1981), setting

a fixed-price offer to the monopoly price or higher requires a reserve price lower than the

optimal reserve price. The seller faces a trade-off between the auction revenue from partici-

pants and the fixed-price revenue from non-participants. In particular, to provide incentives

for participants with low valuations not to pretend to be non-participants, the seller sets a

reserve price lower than Myerson’s optimal reserve price and a fixed-price offer higher than

the monopoly price.

In an incentive compatible mechanism with a reserve price for an auction among partici-

pants and a fixed price offer to non-participants, participants with sufficiently high valuations

have higher allocation priorities than non-participants, and those with low valuations above

the reserve price get the good only when there are no non-participants, or participants

with higher allocation priorities. A necessary condition for optimality of such mechanism

is that there exists a valuation at which a participant has the same allocation priority as

non-participants, being indifferent between in bidding in the auction and pretending to be a

non-participant. We show that any optimal mechanism has an interval of valuations for par-

ticipants, rather than a single one, that have the same allocation priority as non-participants.

The optimality of an equal-priority interval of valuations results from the trade-off be-

tween the auction revenue from participants and the fixed-price revenue from non-participants.

By the envelope theorem, the expected payoff of participants is increasing and convex in

their valuation. If there is a single equal-priority valuation for participant, the expected

payoff function has a kink at the valuation, because the probability of getting the good for

a participant at just above the valuation is greater than that for a non-participant, and is

smaller at just below the valuation. By revenue equivalence, we can keep the revenue from

the auction unchanged at the margin by creating an arbitrarily small interval around the

equal-priority valuation, as the probability of getting the good for participants is increased

below the equal-priority valuation and decreased above it. However, replacing the single

equal-priority valuation with an interval lifts up the expected payoff of participants for the

entire interval. This allows the seller to reduce the fixed-price offer, increasing the revenue

from non-participants.
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To establish that an equal-priority mechanism is optimal, we still have to show that an

optimal mechanism takes the form of a reserve price, a fixed price and an equal-priority

interval, all independent of the realized number of non-participants. This is challenging

because the one-sided incentive constraint that ensures no participant wishes to pretend to

be a non-participant has to hold for each valuation. By first optimizing over all equal-priority

mechanisms and establishing necessary conditions for an optimal equal-priority mechanism,

we construct a multiplier function for the one-sided incentive constraint and use a Lagrangian

relaxation approach to show that any optimal equal-priority mechanism is indeed revenue-

maximizing over all incentive compatible mechanisms.

One appealing feature of the independent private value auction problem for mechanism

design is that finding the revenue maximizing mechanism can be reduced to a problem of

solving a maximization problem with a single parameter - the reserve price. In our problem

of mechanism design with stochastic participation, an optimal equal-priority mechanism can

also be implemented as an “equal-priority auction,” where bids outside the equal-priority

interval are registered as distinguished bids and those in the interval are scrambled and

pooled together with non-participants, together with a fixed-price offer made randomly to a

buyer in the pool. The winner of the auction is the one with the highest distinguished bid

if it is above the equal-priority interval, or if it is below the interval but the pool is empty.

The price paid by the winner is the second highest distinguished bid if it is above the equal-

priority interval, or the maximum of the second highest distinguished bid and the reserve

price if the second highest distinguished bid is below the interval but the pool is empty, and

is otherwise adjusted by the size of the pool. The optimal equal-priority auction can be

found by solving a problem with four parameters - a reserve price, two cutoff valuations that

define the equal-priority interval, and a fixed-price offer to the equal-priority pool. This is

a harder problem than Myerson’s (1981) optimal auction problem, but still computationally

tractable. The numerical solutions we have found in simple environments suggest that the

optimal equal-priority pool is significant.

Participants in the optimal equal-priority pool are indifferent between bidding in the

auction and waiting for a fixed-price offer. For any degree of inconvenience that causes some

buyers to become non-participants in the first place, some of these participants may decide

3



to opt out. A consequence is that fixed prices are used more frequently to determine the

trade than needed by sellers to reach non-participants. Conversely, auctions are used less

often. Moreover, an econometrician who tries to recover distributions of valuations based on

bids placed in an auction would get biased estimates, some valuations in the equal-priority

pool might be missing from the bidding data. Generally speaking, our results suggest that

non-participation should be taken seriously in understanding online auctions.

1.1 Related literature

The premise in our paper is that buyers may not participate in a seller’s auction. This

is similar to the idea in the marketing literature that consumers may not be responsive to

advertised prices. Dickson and Sawyer (1990) asked buyers in supermarkets about their price

knowledge as they were shopping. Even when the item being placed in their basket had been

specially marked down and heavily advertised, 25% of consumers did not even realize the

good was on special. The approach used earlier in economics, as in, say Butters (1977), was

that buyers randomly observe price offers in a competitive environment. In that literature,

firms advertise prices which some buyers see, while others do not.1 These papers considered

the same problem that we do, which is how non-responsive buyers would affect the prices

that sellers offer. The difference is that we are interested in mechanisms, not prices.

Sellers’ attempt to sell to non-participants provides type-dependent outside options to

participants as they are free to pretend to be non-participants. This is the basic problem

in the literature on competing mechanisms. One example is the paper by McAfee (1993).

His model had buyers whose outside option involved waiting until next period to purchase

in a competing auction market just like the one in the current period. He imposed large

market assumptions to ensure that the value of these outside options was independent of

the reserve price that any seller in the existing market chose. In our paper, the value of this

outside option depends on the nature of the mechanism the seller chooses for participants.

This makes it resemble later papers on competing mechanisms in terms of outside options,

like Virag (2010) who studies finite competing auction models where a seller who raises her

1See also Varian (1980), or Stahl (1994). In Varian (1980), some buyers are loyal to a specific seller, while
others are just interested in the lowest price.
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reserve price increases congestion in other auctions, or Hendricks and Wiseman (2020) who

study the same problem in a sequential auction environment.

Our participants can “prove” their identity in the same sense as Porath, Dekel and

Lipman (2014). The main difference is that they assume that all players have this option

at some cost under a social choice function, while in our model the driving force is the

stochastic presence of buyers who cannot participate in the seller’s mechanism. They also

assume players have complete information about the state, but in our model only buyers

know their own valuations.

Finally, our participants can pretend they are non-participants but not the other way

around. The one-sidedness of this incentive condition is similar to Denekere and Severi-

nov (2006), who study an optimal non linear pricing problem with a fraction of consumers

constrained to reporting their valuations truthfully.2 As in our paper, their mechanism sepa-

rates “honest” consumers from “strategic” consumers who can misrepresent their valuations

costlessly. The main difference is that we start with a standard independent private value

auction problem rather than a non linear pricing problem.

2 Mechanisms with Stochastic Participation

There are n potential buyers of a single homogeneous good for sale by a seller. Each buyer

has a privately known valuation w that is independently drawn from the interval [0, 1].

We assume that all valuations are distributed according to some distribution F with a

continuously differentiable density f . Buyers’ payoff when they buy at price p is given by

w − p. The seller’s cost is zero, so the profit from selling at price p is just p.

Define

π(w) = (1− F (w))w

as the revenue function from a take-it-or-leave-it offer w to a buyer. Throughout the paper

we maintain the following assumption.

Assumption 1 π(·) is strictly concave.

2See also Sher and Vohra (2015). They use graph theory to study a more general non linear pricing
problem with voluntary provision of hard evidence.
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Following the standard auction literature, we also define

φ(w) = w − 1− F (w)

f(w)

as the virtual valuation function. We have φ(0) < 0 and φ(1) = 1, and so φ(w) crosses 0

at least once. Since π′(w) = −φ(w)f(w), concavity of π(·) implies that φ(w) crosses 0 only

once. Let the crossing point be r∗; this is also the unique maximizer of π(w). Furthermore,

φ(w) is strictly increasing in v for w ≥ r∗.3 The valuation r∗ represents the optimal reserve

price in a standard auction, regardless of the number of buyers.4

Buyers are either participants or a non-participants in the seller’s mechanism, each buyer

with probability α ∈ (0, 1) being a non-participant independent of their valuation. Since the

revelation principle applies to participants, we restrict the seller to direct mechanisms and

Bayesian Nash equilibria in which all realized participants report their valuations truthfully.

By assumption, non-participants do not report their valuations; instead, we assume that

the seller’s mechanism may randomly select one buyer from those who do not report their

valuations and make a take-it-or-leave-it offer.

We need to add some notation to formally describe a symmetric mechanism with clarity.

In what follows the notation m always means the number of non-participants. We reorder

n buyers such that the first n−m of them are participants; the orders among participants

and among non-participants are arbitrary. For each profile of reported valuations of n−m

participants, v = (v1, . . . , vn−m) ∈ [0, 1]n−m, and for each i = 1, . . . , n−m, let

ρim(v) = (vi, v2, . . . , vi−1, v1, vi+1, . . . , vn−m);

that is, ρim(v) switches the positions of v1 and vi. Now we have

3At any w ∈ (0, 1), if f(w) is non-decreasing, then by definition φ(w) is strictly increasing; if f(w) is
strictly decreasing at w and if φ(w) ≥ 0, then φ(w) is strictly increasing in w, because concavity of π(w)
implies that φ(w)f(w) is strictly increasing in w.

4In much of the auction literature, the seller has the fixed outside option of keeping the good. The virtual
valuation function φ(w) is assumed to be strictly increasing to simplify the analysis (the “regular case” in
Myerson (1981)). In our model, the seller’s outside option in an auction with participants is to give it to an
unobservant buyer with a take-it-or-leave-it offer, and is endogenous. We do not need to assume that φ(w)
is strictly increasing for valuations below r∗.
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Definition 1 A symmetric mechanism δ is a collection of functions

{

(qσm, p
σ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

where qσm, p
σ
m : [0, 1]n−m → [0, 1] for each m = 0, . . . , n− 1, and qµm, p

µ
m : [0, 1]n−m → [0, 1] for

each m = 1, . . . , n, satisfying

• (qσm(v), p
σ
m(v)) are invariant to permutations of (v2, . . . , vn−m), and (qµm(v), p

µ
m(v)) are

invariant to permutations of (v1, . . . , vn−m);

• for all v and for all m,

n−m
∑

i=1

qσm
(

ρim (v)
)

+mqµm(v) ≤ 1. (1)

The function qµm (v) gives the probability with which a take-it-or-leave-it offer pµm(v) is

made to a non-participant, given that there arem non-participants and the profile of reported

valuations is v = {v1, . . . , vn−m}. The function qσm (v) gives the probability that buyer 1 gets

the good, and conditional on getting the good, the payment pσm(v) made to the seller, given

that there arem non-participants and the reported valuation profile of buyers i = 2, . . . , n−m

is v−1 = {v2, . . . , vn−m}. Symmetry requires the allocation and the offer functions of non-

participants to be invariant to permutations of the valuation profile of participants, and the

allocation and the payment functions of each participant to be invariant to permutations of

the reported valuation profile of the other participants. Since ρim (v) switches the positions

of the first element of v and its i-th element, the sum
∑n−m

i=1 qσm (ρim (v)) gives the probability

that one of the first n − m elements of v gets the good. Then (1) ensures that when

participants have valuations given by the first n−m valuations in v, the probability that one

of them gets the good plus the probability that the good is offered to one of non-participants

is less than or equal to 1.
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2.1 Incentive compatibility

In our mechanism design problem, non-participants are reduced to waiting for a take-or-leave-

it offer. Participants must be induced to report their valuation truthfully by the seller’s

mechanism, and to participate in the mechanism in the first place instead of pretending

to be a non-participant. We now use the standard methodology to characterize incentive

compatibility, and to derive a revenue equivalence result.

Under a mechanism δ =
{

(qσm, p
σ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

, by truthfully reporting their val-

uation, the probability that a participant with valuation w gets the good when there are

m ≤ n− 1 non-participants is

Qσ
m(w) = Ev−1

[qσm(w, v−1)] ,

where v−1 = (v2, . . . , vn−m). Similarly

P σ
m(w) = Ev−1

[qσm(w, v−1)p
σ
m(w, v−1)]

is the expected payment the participant with valuation w makes. By taking expectations of

Qσ
m and P σ

m over m, we have the ex ante probability of getting the good and the expected

payment for a participant with valuation w:

Qσ (w) =
n−1
∑

m=0

Bn−1
m (α)Qσ

m (w)

P σ (w) =
n−1
∑

m=0

Bn−1
m (α)P σ

m (w) ,

where Bñ
m̃(α) is the probability that m̃ randomly drawn buyers out of ñ ≥ m̃ buyers are

non-participants, given by

Bñ
m̃(α) =





ñ

m̃



 (1− α)ñ−m̃αm̃.
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For each m = 0, . . . , n− 1, define

Uσ
m(w) = wQσ

m (w)− P σ
m (w)

as the indirect payoff of a participant with valuation w from truthful reporting when there

are m non-participants, under a mechanism δ =
{

(qσm, p
σ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

. Define

Uσ (w) =
n−1
∑

m=0

Bn−1
m (α)Uσ

m(w) = wQσ (w)− P σ (w) .

This is the expected payoff of a truthful participant with valuation w under δ. If the mecha-

nism is incentive compatible with respect to valuations, the expected payoff to a participant

with valuation w can be written as

Uσ (w) =

∫ w

0

Qσ (x) dx, (2)

with Qσ(·) non-decreasing.5 The (interim) payoff to a non-participant with valuation w is

Uµ (w) =

n−1
∑

m=0

Bn−1
m (α)Ev

[

qµm+1(v)max
{

w − pµm+1(v), 0
}]

.

Definition 2 The mechanism δ =
{

(qσm, p
σ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

is incentive compatible if

Qσ(·) is non-decreasing, and
Uσ (w) ≥ Uµ (w) (3)

for every w ∈ [0, 1].

Condition (3) can be viewed as a type-independent participation condition. It ensures that

participants do not have incentives to pretend to be non-participants.

The seller’s expected revenue from participants is given by

n−1
∑

m=0

Bn
m(α)Ev

[

n−m
∑

i=1

qσm(ρ
i
m(v))p

σ
m(ρ

i
m(v))

]

.

5See, for example, Myerson (1981). We have assumed Uσ(0) = 0 for simplicity. This is usually not part of
requirement for incentive compatibility, but clearly necessary for any revenue maximizing direct mechanism.
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By the symmetry of the mechanism, we can write the above as

n−1
∑

m=0

Bn
m(α)(n−m)

∫ 1

0

(wQσ
m(w)− Uσ

m(w))f(w)dw.

Using the definitions of Qσ and Uσ, and the envelope condition (2), integration by parts

implies that the revenue from participants is

n(1− α)

∫ 1

0

Qσ (w)φ(w)f(w)dw, (4)

in any mechanism that is incentive compatible with respect to evaluations. The above is the

familiar revenue equivalence result regarding participants, adapted to stochastic participation

in our model.

The revenue from non-participants is

n
∑

m=1

Bn
m(α)Ev [mqµm(v)π (pµm(v))] . (5)

Since non-participants do not accept the fixed-price offers with probability one, revenue

equivalence does not apply. The revenue cannot be written as a function of allocations

{qµm} alone. Further, condition (3) has to be dealt with separately when the seller chooses a

mechanism δ to maximize R(δ) given by the sum of (4) and (5).

3 Equal-Priority Mechanisms

Instead of directly solving the problem of optimal mechanism with stochastic participation

directly, we first consider a special class of mechanisms which we call “equal-priority” mech-

anisms. We describe the set of all incentive compatible equal-priority mechanisms, and then

characterizes the one that gives the seller the highest expected revenue. In the next section

we will verify that the seller cannot do strictly better among all mechanisms.

An equal-priority mechanism is fully characterized by four numbers, a reserve price r, a

take-it-or-leave-it offer t, and the upper and lower bound w and w of an interval of buyer

valuations, satisfying r ≤ w ≤ w. Let m be the number of non-participants, and k be the
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number of reported valuations in the “equal-priority interval” [w,w]. The mechanism treats

the m non-participants and the k participants with the same allocation priority; we refer to

them as “equal-priority pool.” Participants with reported valuations above w have higher

priorities than the m+ k buyers in the equal-priority pool, and those with valuations below

w but above r have lower priorities. When w = w, with probability one the equal-priority

pool contains only the m non-participants.

In words, the allocations, payments and offers in an equal-priority mechanism are deter-

mined in the following way:

• When the highest reported valuation is less than r: no participant gets the good; for

each m ≥ 1, with probability 1/m an offer t is made to a non-participant.

• When the highest reported valuation by a participant is between r and w: if m = 0, the

participant gets the good with probability one and pays the maximum of the second

highest reported valuation and r; if m ≥ 1, with probability 1/m, an offer t is made to

a non-participant.

• When the highest reported valuation by a participant is between w and w: ifm+k = 1,

the participant gets the good with probability one and pays the maximum of the second

highest reported valuation and r; if m+k ≥ 2, each participant with reported valuation

between w and w gets the good with probability 1/(m+k), and conditional on getting

the good, pays w, while each non-participant gets t with probability 1/(m+ k).

• When the highest reported valuation by a participant is above w: the participant gets

the good with probability one, pays the second highest reported valuation if it is above

w, pays (w + (m + k)w)/(m + k + 1) if the second highest reported valuation is in

[w,w] or if m ≥ 1, and otherwise pays the maximum of the second highest reported

valuation and r.

An equal-priority mechanism {r, w, w; t} is a modified second-price auction with a re-

serve price r for participants, combined with a take-it-or-leave-it offer t to non-participants.

However, we have an equal-priority pool consisting of participants with valuations between

w and w and non-participants. As a result, the payment made by the participant with the
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highest reported valuation, is the maximum of r and the second highest reported valua-

tion, only if the second highest reported valuation is outside [w,w], and only if there are no

non-participants when the second highest reported valuation is lower than w.

Formally, using the notation of direct mechanisms introduced in section 2, we can repre-

sent an equal-priority mechanism {r, w, w; t} as follows. Suppose that v1 is the highest re-

ported valuation, and v2 be the second highest reported valuation. The collection of functions
{

(qσm(v), p
σ
m(v))

n−1
m=0 , (q

µ
m(v), p

µ
m(v))

n

m=1

}

given by an equal-priority mechanism {r, w, w; t} is































qσm(v) = 0 if v1 < r, or v1 ∈ [r, w) and m ≥ 1

qσm(v) = 1/(m+ k), pσm(v) = w if v1 ∈ [w,w] and m+ k ≥ 2

qσm(v) = 1, pσm(v) = (w + (m+ k)w)/(m+ k + 1) if v1 > w, and v2 ∈ [w,w] or m ≥ 1

qσm(v) = 1, pσm(v) = max{v2, r} if otherwise,

and






qµm(v) = 0 if v1 > w

qµm(v) = 1/(m+ k), pµm(v) = t if otherwise.

Suppose that participants buyers truthfully report their valuations in an equal-priority

mechanism. Then using the allocation rule, we can calculate the probability Qσ(w) with

which each valuation of participants trades as follows.

For w < r, we have Qσ(w) = 0 as participants with valuation w below the reserve price

r are excluded from allocation. For w ∈ [r, w), we have

Qσ(w) = (1− α)n−1F n−1(w),

as participants with valuation w below the pooling interval [w,w] have lower allocation

priorities than non-participants. They get the good only when all other n − 1 buyers are

participants, and only when w is the highest among them above the reserve price r. For

w > w, we have

Qσ(w) =

n−1
∑

m=0

Bn−1
m (α)F n−1−m(w) = ((1− α)F (w) + α)n−1 ,
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as participants with valuation w above the pooling interval [w,w] have higher allocation

priorities than non-participants. They get the good when any of the n − 1 buyers is either

a participant with a valuation lower than w, or a non-participant.

Finally, for w ∈ [w,w], we have

Qσ(w) =
n−1
∑

m=0

Bn−1
m (α)

n−1−m
∑

k=0

Bn−1−m
k (w,w)

1

m+ k + 1
,

where

Bñ

k̃
(w,w) =





ñ

k̃



 (F (w)− F (w))k̃F ñ−k̃(w)

is the probability that k̃ participants, who are randomly drawn out of ñ ≥ k̃ participants with

valuations w ≤ w, have valuations in the pooling interval [w,w]. The allocation probability

Qσ(w) is independent of w ∈ [w,w], because all participants with valuations on the pooling

interval have the same allocation priority. As it plays a critical role in the analysis below,

for convenience we denote the trading probability Qσ(w) for w ∈ [w,w] as χ(w,w). We

re-do the double summations over m and k by first summing over k for fixed l = m+ k then

summing over l:

χ(w,w) =

n−1
∑

l=0





n− 1

l



 ((1− α)F (w))n−1−l 1

l + 1

l
∑

k=0





l

k



 ((1− α)(F (w)− F (w)))kαl−k

=
n−1
∑

l=0





n− 1

l



 ((1− α)F (w))n−1−l 1

l + 1
((1− α)(F (w)− F (w)) + α)l.

It follows that

χ(w,w) =
((1− α)F (w) + α)n − ((1− α)F (w))n

n((1− α)(F (w)− F (w)) + α)
. (6)

The logic of (6) is that, the probability that a participant whose valuation is in the equal-

priority interval [w,w] gets the good, χ (w,w), is the same for all participants with valuation

in the pool, and the same as any non-participant, as long as there are no participants

reporting a valuation above w. This explains why in the formula (6) the denominator is

the expected number of buyers in the equal-priority pool, and the numerator is the ex ante

13



probability that there is at least one buyer, participant or non-participant, in that equal-

priority pool.

To summarize, we have the following expected allocation for participants with any valu-

ation w:

Qσ(w) =































0 if w < r

(1− α)n−1F n−1(w) if w ∈ [r, w)

χ(w,w) if w ∈ [w,w]

((1− α)F (w) + α)n−1 if w > w.

(7)

The following result gives the necessary and sufficient condition for an equal-priority mech-

anism {r, w, w; t} to be incentive compatible.

Lemma 1 An equal-priority mechanism {r, w, w; t} is incentive compatible if and only if

∫ w

r

(1− α)n−1F n−1(w)dw ≥ χ(w,w)(w − t) (8)

Two arguments are needed to establish Lemma 1. The first is standard: we need to

show that the rules of allocation and payment are the ones that make truthful reporting

by participants incentive compatible. Since the allocation rule is monotone, we just need

to show that the payoff of participants Uσ(w) from truthful reporting satisfies (2) for each

w. Indeed, the payment rule is constructed from the allocation rule of the equal-priority

mechanism to ensure that it is incentive compatible with respect to valuations. The second

is to show that when t satisfies condition (8) no participant can improve their payoff by

pretending to be a non-participant. Since Qσ(w) = χ(w,w) for all w ∈ [w,w], it follows

from (2) that Uσ(w) is linear with slope χ(w,w). By construction, this is the same slope as

the increasing part of the payoff function Uµ(w) for non-participants. This is

Uµ(w) = χ(w,w)max{w − t, 0}, (9)

because non-participants have the same allocation priority as participants whose valuations

are in [w,w]. Moreover, since by construction Qσ(w) is strictly increasing for w ∈ [r, w)

and w > w, it follows from (2) that the payoff function Uσ(w) is strictly convex for w ≥ r
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outside [w,w]. The equal-priority mechanism {r, w, w; t} is therefore incentive compatible if

and only if

Uσ(w) ≥ Uµ(w).

This is precisely (8).

Figure 1 shows the payoffs to participants and non-participants in an equal-priority mech-

anism with a binding incentive compatible constraint (8). The green line represents the

payoff function Uµ(·) of a non-participant or a participant that acts as one. It is zero for

valuations below t, and has a slope equal to χ(w,w) above t. The red curve represents the

payoff function Uσ(w) to a participant. It coincides with the green line for valuations in the

equal-priority interval [w,w] because the incentive condition (8) is binding, and is strictly

convex for valuations between r and w, and above w.

w

Uµ(w)

tr w w

Uσ(w)

Figure 1. An equal-priority mechanism with a binding incentive constraint.

In any equal-priority mechanism, participants with low valuations, between r and w, and

those with high valuations, above w, are strictly worse off by pretending to a non-participant.

If the incentive compatibility constraint (8) is binding, it is a matter of indifference for

participants with valuations in [w,w] whether they truthfully report their valuations or wait

for fixed-price offer t just like a non-participant. Indeed, the same truth telling equilibrium
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among participants is implemented if we change the payment rule, so that a participant

with valuations in the equal-priority interval [w,w] gets a fixed-price offer always equal to

t, instead of being asked to pay the maximum of the second highest bid and reserve price

r when there are no other buyers in the equal-priority pool, and w when there is at least

one other buyer in the pool. Furthermore, by revenue equivalence, the seller’s revenue from

participants is the same if all participants with valuations in the equal-priority interval [w,w]

behave in the same way as non-participants. Since the allocation probability qµ(v) and the

offer pµ(v) for non-participants depend only on the size of the equal-priority pool, i.e., m+k,

and not on its composition, the seller’s revenue from non-participants is also unaffected by

whether or not participants with valuations in [w,w] pretend to be non-participants.

Any equal-priority mechanism {r, w, w; t} with a binding incentive condition (8) is there-

fore payoff-equivalent for all buyers and the seller to the following auction, where a bid is

registered as a distinguishable bid it is outside the equal-priority interval [w,w], and is oth-

erwise scrambled and pooled with non-participants, together with a fixed-price offer t made

to a randomly selected buyer in the pool (l is the size of the pool below).

• When the highest distinguishable bid is less than r: the seller keeps the object if

l = 0; otherwise, with probability 1/l the seller makes an offer t to each buyer in the

equal-priority pool.

• When the highest distinguishable bid is between r and w: if l = 0, the bidder that

makes the bid wins, and pays the maximum of the second highest distinguishable bid

and r; if l ≥ 1, with probability 1/l, the seller makes an offer t to each buyer in the

equal-priority pool.

• When the highest distinguishable bid is above w: the bidder that makes bid wins; the

winner pays the second highest distinguishable bid if it is above w, pays the maximum

of r and the second highest distinguishable bid if it is below w and l = 0, and otherwise

pays (w + lw)/(l + 1).

The above indirect mechanism is what we refer to as the “equal-priority auction” in the

introduction. It is a modified second-price auction. The winner is the one with the highest
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distinguishable bid above the reserve price r, except when it is lower than w and the equal-

priority pool is non-empty, in which case the good is sold through the fixed-price offer of t

to a random buyer in the pool. The price paid by the winner is the maximum of the reserve

price r and the second highest distinguishable bid, except when the latter is lower than w

and the equal-priority pool is non-empty, in which case the price is adjusted by the size of

the equal-priority pool, given by (w + lw)/(l + 1).

3.1 Optimal equal-priority mechanism

Under an equal-priority mechanism {r, w, w; t}, the seller’s expected revenue from partici-

pants is given by (4) with Qσ(w) specified in (7). The revenue from non-participants, given

by (5), becomes
n
∑

m=1

Bn
m(α)

n−m
∑

k=0

Bn−m
k (w,w)

m

m+ k
π(t).

Using a similar method as in computing χ(w,w), we redo the double summations above by

first summing over l = m+ k and then over l:

n
∑

l=1





n

l



 ((1− α)F (w))n−l

l
∑

k=0





l

k



 ((1− α)(F (w)− F (w)))kαl−k l − k

l
π(t)

=

n
∑

l=1





n

l



 ((1− α)F (w))n−l((1− α)(F (w)− F (w)) + α)l−1απ(t)

=
((1− α)F (w) + α)n − ((1− α)F (w))n

(1− α)(F (w)− F (w)) + α
απ(t).

Thus, we can write the objective of the problem of optimal equal-priority mechanism as

n(1 − α)

∫ 1

0

Qσ (w)φ(w)f(w)dw+ nαχ(w,w)π(t). (10)

The choice variables are {r, w, w; t}, and the constraints are r ≤ w ≤ w and (8). The

following lemma provides a characterization of the solution in terms of necessary first-order

conditions.

17



Lemma 2 If {r, w, w; t} is an optimal equal-priority mechanism, then

0 < r < r∗ < t < w < w < 1.

Further, (8) holds with equality, and

α(π(t)− φ(w)) = (1− α)

(

(w − t)(φ(w)− φ(w))f(w) +

∫ w

w

(φ(w)− φ(w))f(w)dw

)

; (11)

−απ′(t) = (1− α)(φ(w)− φ(w))f(w); (12)

−φ(r)f(r) = (φ(w)− φ(w))f(w). (13)

Incentive compatibility of an equal-priority mechanism {r, w, w; t}, condition (8), requires

that r < t, so that participants with valuations just above r do not have incentives to pretend

to be a non-participant.6 Our proof of Lemma 2 (in the appendix) first shows that r < r∗ < t.

This means that the seller provides incentives for participants with low valuations by selling

to participants with negative virtual valuations, and simultaneously raising the fixed-price

offer to non-participants to above the monopoly price r∗. That the optimal reserve price r is

lower than r∗, the optimal reserve price of Myerson (1981), is one impact of non-participants

on auctions for participants.

A more drastic impact is the existence of an equal-priority interval for participants. In

the appendix, we use a variational argument to show that w < w, so that there is a non-

degenerate equal-priority interval [w,w] for participants as long as participation is stochastic,

i.e., α > 0. If the interval is degenerate, with w = w = ŵ, the equal-priority pool contains

only non-participants. From the expressions of Qσ(·) in (7), we can easily verify that Uσ(w)

has an upward kink at w = ŵ, with the slope just below ŵ and the slope just above ŵ

bracketing χ(ŵ, ŵ). By marginally decreasing w and increasing w to create an arbitrarily

small equal-priority interval around ŵ, the seller can make the loss in the revenue from

participants negligible. However, these variations in Qσ(·) raise the payoff function Uσ(w)

strictly above Uµ(w) over the newly created interval. As a result, the incentive condition

(8) is relaxed. Since t > r∗, this allows the seller to reduce t marginally, with a first-order

6The slope of Uσ(w) at w just above r is 0 while the slope of Uµ(w) at w just above t is strictly positive.
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increase in the revenue from non-participants.

In any optimal equal-priority mechanism, the incentive condition (8) for participants with

valuations in the equal-priority interval [w,w] is binding. Otherwise, in Figure 1 we would

have a line segment in the payoff function Uσ(·) for participants parallel to, and above, the

linear part of the payoff function Uµ(·) for non-participants. The seller would then want

to either shrink the equal-priority interval, by increasing w and decreasing w, or raise the

take-it-or-leave-it offer t to none-participants.

3.2 Properties of optimal equal-priority mechanism

The conditions in Lemma 2 can be used derive properties of an optimal equal-priority mech-

anism.7 First, if the seller does not give the object to a participant, the seller can always

make a take-it-or-leave-it offer to a non-participant if there is one. Absent incentives, the

seller would set the reserve price r(t) for participants so that the virtual valuation is equal

to the expected profit π(t) of making the offer t to a non-participant:

φ(r(t)) = π(t).

By condition (11), the optimal equal-priority mechanism has φ(w) < π(t). This means that

the seller gives the object to participants even though their virtual valuations are lower

than the value of the seller’s “outside option” π(t). The reason for doing this is to provide

incentives for participants with valuations just above w to truthfully report their valuation

rather than wait for the fixed-price offer by pretending to be a non-participant.

Second, when all buyers are surely participants, the revenue from the optimal equal-

priority mechanism converges to the revenue from the standard auction with reserve price

r∗. From equation (13), it becomes optimal for the seller not to distort the reserve price r

7They are all derived with variational arguments without explicitly using a multiplier for (8). From the
proof in the appendix, it can be seen that the value of the multiplier associated with (8) is the right-hand
side of (12) multiplied by n. This turns out to be the integral of the multiplier function λ(·) in the proof
of Theorem 1 over the valuation support [0, 1]. Under a similar Lagrangian relaxation approach as in the
proof of Theorem 1, we can use this value of the multiplier to show that (11), (12) and (13), together with
binding (8), are also sufficient for an optimal equal-priority mechanism. The sufficiency of the conditions
in Lemma 2 is also implied by Theorem 1, because they are shown to imply allocations and prices that are
optimal among all mechanisms.
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at all to provide incentives. The equal-priority interval shrinks to a single valuation w0 as

α goes to 0,8 satisfying the binding constraint (8) that a participant with valuation w0 is

indifferent between truthfully reporting it and receiving a fixed-price offer t0 when all other

participants have valuations below w0,

∫ w0

r∗
F n−1(w)dw = F n−1(w0)(w0 − t).

The limit values of w0 and t0 satisfy the above indifference condition and the limit version

of first order conditions (11) and (12), given by

π′(t0)(w0 − t0) + π(t0)− φ(w0) = 0.

We have t0 > r∗ and π(t0) > φ(w0). When α is arbitrarily close to 0, the incentives for

participants not to pretend to be a non-participant are provided by raising the fixed-price

offer to an unlikely non-participant above r∗, and not selling to non-participants even when

the profit from doing so exceeds virtual valuations of participants.

Third, in the opposite limit of α = 1, buyers are surely non-participants, and the revenue

from the optimal equal-priority mechanism converges to the revenue from a fixed-price offer

r∗. By (12), the seller no longer distorts t to provide incentives for participants. From (11),

the upper-bound of the equal-priority interval w converges to r(r∗), satisfying

φ(r(r∗)) = π(r∗),

as the need for the seller to provide incentives for participants with valuations just above the

upper-bound becomes second order. From the binding constraint (8), the lower-bound of the

equal-priority interval becomes r∗.9 This prevents an unlikely participant with a valuation

equal to the lower bound from pretending to be a non-participant, as the buyer has almost

8The limit of χ(w,w) as α goes to 0 and w and w shrink to the same point of w0 is Fn−1(w0). That is,
when all other buyers are almost surely participants, a deviating participant will be the only buyer in the
equal-priority pool and will win the object with probability one if all other buyers (who are participants)
have valuation below w0.

9The limit of χ(w,w) as α goes to 1 is 1/n, as an unlikely participant will surely face n−1 non-participants
in the equal-priority pool after pretending to be a non-participant.
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no chance of making the winning bid with the limit reserve price r1 satisfying (13)

−φ(r1)f(r1) = π(r∗)f(r∗).

As long as α is strictly less than 1, however, we still need w > r1 to in order to provide

incentives for participants with valuations just below w not to deviate and pretend to be

non-participants.

4 Optimal Mechanisms

The main result of this paper is that an optimal equal-priority mechanism provides the

seller the highest expected revenue among all incentive compatible mechanisms given in

Definitions 1 and 2. A mechanism δ given in Definition 1 consists of a series of functions

(qσm(v), p
σ
m(v))

n−1
m=0 and (qµm(v), p

µ
m(v))

n
m=1. We first use Assumption 1 to simplify the optimal

design problem. Replacing all these offers with the expected offer reduces the deviation

payoff to participants from pretending to be a non-participant. Concavity then implies a

greater revenue from non-participants.

Lemma 3 In any optimal incentive-compatible direct mechanism, pµm(v) is independent of

m and v.

Using Lemma 3, we denote the constant price offered to non-participants as pµ. Define

Qµ =

n−1
∑

m=0

Bn−1
m (α)Ev

[

qµm+1(v)
]

to be the total probability of an offer expected by a non-participant. The expected revenue

from non-participants, given by (5), can be written as

n
∑

m=1

Bn
m(α)Ev [mqµm(v)π (pµm(v))] = nαQµπ (pµ) .

Next, we drop the transfers (pσm(v))
n−1
m=0 to participants, and consider a maximization

problem using only allocations (qσm(v))
n−1
m=0. Once we show that an optimal equal-priority
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mechanism {r, w, w; t} solves the problem, we can then use the payment rule in section 3

to construct the transfers (pσm(v))
n−1
m=0 and the resulting payoff function Uσ(·), and apply

Lemma 1 to conclude that the solution is incentive compatible.

The optimal mechanism problem can be stated as choosing (qσm(v))
n−1
m=0, (q

µ
m(v))

n
m=1, and

pµ to maximize

n(1− α)

∫ 1

0

Qσ (w)φ(w)f(w)dw+ nαQµπ (pµ) ,

subject to the feasibility constraint (1), Qσ (·) is non-decreasing, and for every w

∫ w

0

Qσ (x) dx ≥ Qµ max {w − pµ, 0} . (14)

Theorem 1 There is no incentive compatible mechanism that yields a strictly greater rev-

enue for the seller than an optimal equal-priority mechanism.

To establish Theorem 1, we need to show that an optimal equal-priority mechanism solves

the maximization set up for the theorem. Optimizing over all incentive compatible direct

mechanisms is difficult, due to the continuum of incentive constraints (14) for participants

with any valuation w not to pretend to be a non-participant. Instead we adopt an indirect

approach of Lagrangian relaxation method, by incorporating the continuum of constraints

through a multiplier function. The construction of the multiplier function uses the necessary

conditions established in Lemma 3 for an optimal equal-priority mechanism. This approach

may be used in more general problems of mechanism with stochastic participation discussed

in section 5. We outline it in the next subsection.

4.1 Lagrangian relaxation approach

Let λ(·) be an arbitrary non-negative valued Lagrangian function from [0, 1] into R. The

relaxed problem is to maximize

n(1 − α)

∫ 1

0

Qσ (w)φ(w)f(w)dw+ nαQµπ (pµ)

+

∫ 1

0

λ (w)

(
∫ w

0

Qσ (x) dx−Qµmax {w − pµ, 0}
)

dw,
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with the same choice variables and constraints except (14). That is, by introducing the La-

grangian function, we incorporate a continuum of constraints (14) into the objective function

of the relaxed problem as an extra term.

The above relaxed problem has different solutions depending on the choice of λ(·). Re-

gardless of the choice of λ(·), however, the value of the relaxed problem is an upper bound

on the value of the full problem, because the solution to the full problem is feasible for the

relaxed problem and because the extra term in the objective function of the relaxed problem

is non-negative by construction. We will try to construct a function λ (·) such that the solu-

tion to the relaxed problem is an optimal equal-priority mechanism. Since the equal-priority

mechanism yields an upper bound on the seller’s revenue in the full problem, and since it

satisfies all the constraints in the full problem, it solves the full problem.

The multiplier function λ(·) is the shadow cost (benefit) of violating (relaxing) the con-

straints (14). The second term in the relaxed Lagrangian is the total shadow value. The

relaxed problem is then choosing feasible allocations (qσm(v))
n−1
m=0 and (qµm(v))

n
m=1, together

with pµ, subject to the feasibility constraint (1), to maximize the sum of the resulting

revenues from participants and non-participants, and the shadow values. The key to our

construction of the desired λ(·) is that, first, it satisfies complementary slackness so that

the extra term in the relaxed Lagrangian is zero; and second, the allocations of an optimal

equal-priority mechanism characterized by Lemma 2 maximize the sum of the revenues and

the shadow values.

More precisely, we use integration by parts and rewrite the Lagrangian as

∫ 1

0

Kσ(w)Qσ(w)f(w)dw +KµQµ,

where, for each w ∈ [0, 1],

Kσ(w)f(w) = n(1− α)φ(w)f(w) +

∫ 1

w

λ(x)dx;

Kµ = nαπ(pµ)−
∫ 1

0

λ(x)max{x− pµ, 0}dx.

The two terms of Kσ(w) and Kµ precisely capture how the shadow values are incorporated
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into the objective of the relaxed Lagrangian separately through the revenue from participants

and the revenue from non-participants, with the former dependent on the valuation but the

latter independent. Disaggregating Qσ(w) and Qµ over the realized number m of non-

participants and over the realized valuation profile v of n − m participants, and using the

symmetry of the mechanism, we have the final expression for the relaxed Lagrangian:

(1− α)n−1

n
Ev

[

n
∑

i=1

Kσ(vi)q
σ
0 (ρ

i
0(v))

]

+
n−1
∑

m=1

Ev

[Bn−1
m (α)

n−m

n−m
∑

i=1

Kσ(vi)q
σ
m(ρ

i
m(v))

+Bn−1
m−1(α)K

µqµm(v)
]

+ αn−1Kµqµn. (15)

The first term in (15) represents the objective of the relaxed Lagrangian when m = 0, where

Kµ does not appear because all n buyers are participants. Similarly, the last term represents

the objective when m = n, where Kσ does not appear and qµn is constant because there are

no participants. The middle term in (15) represents the objective of the relaxed Lagrangian

when there are both participants and non-participants, that is, when m is between 1 and

n− 1, with the first part for participants and the second for non-participants.

Fix an equal-priority mechanism {r, t, w, w} that binds the incentive condition (8) and

satisfies the necessary conditions for optimality, equations (11)-(13) in Lemma 2. We con-

struct a multiplier function λ, with λ(w) = 0 for all w 6∈ [w,w], such that Kσ(w) is equal to

a constant Kσ(w) for all w ∈ [w,w].10 Under Assumption 1, using the necessary conditions

in Lemma 2 for {r, t, w, w} to be an optimal equal-priority mechanism we can show that

λ(w) ≥ 0 for all w ∈ [w,w], with Kσ(w) strictly increasing for all w < w and w > w such

that Kσ(w) > 0. Further, we can show that pµ = t maximizes Kµ, and hence the relaxed

Lagrangian (15), and the maximized value Kµ
t of Kµ satisfies

Bn−1
m (α)

n−m
Kσ(w) =

Bn−1
m−1(α)

m
Kµ

t .

Theorem 1 follows by showing that the allocations given by the equal-priority mechanism

maximizes (15). In particular, when m is between 1 and n− 1, it is point wise maximizing

10For any w < w, there is a unique such function λ. To see this, note that Kσ(w) = n(1−α)φ(w) because
λ(w) = 0 for all w > w. We can then solve for λ(w) for all w ∈ [w,w] from Kσ(w) = Kσ(w).
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to give the good to the participant with the highest valuation if it is greater than w, that

is, choose qσm(ρ
i
m(v)) = 1 if vi is the highest among (v1, . . . , vn−m) and if vi > w. Otherwise,

by (1), the seller should give the good with an equal probability to all k participants with

valuations in [w,w] and m non-participants. That is, under the feasibility constraint (1),

it is point wise maximizing to choose qσm(ρ
i
m(v)) = qµm(v) = 1/(m + k) if vi is the highest

valuation among (v1, . . . , vn−m) and if vi is on the interval [w,w].

4.2 Observable stochastic participation

To understand revenue and welfare effects of stochastic participation, we compare the op-

timal equal-priority mechanism established in Theorem 1 to the benchmark of “observable

stochastic participation” where the seller can separate participants from non-participants.

In this benchmark, the seller chooses a direct mechanism
{

(qσm, p
σ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

as de-

fined in Definition 1. Only incentive compatibility with respect to valuations is required of

participants. The optimal mechanism in the benchmark maximizes the sum of the expected

revenue from participants (4) and from non-participants (5), subject only to the feasibility

constraint (1). Lemma 3 applies, and the optimal pµ(v) = r∗, m = 1, . . . , n, for all profile

of valuations v of participants. For any m between 1 and n − 1, the optimal allocation is

to choose qσm(ρ
i
m(v)) = 1 if vi is the highest among the profile v = (v1, . . . , vn−m) and if

vi > r(r∗), and otherwise qµm(v) = 1/m; for m = 0, the optimal allocation is qσ0 (ρ
i
m(v)) = 1 if

vi is the highest among the profile v and if vi > r∗, and qσ0 (ρ
i
m(v)) = 0 for all i. The optimal

mechanism under observed stochastic participation has no equal-priority interval for partic-

ipations, because the seller can separate participants from non-participants without paying

any information rent to the former. For participants, in addition to the optimal reserve price

of r∗ of Myerson’s (1981) that applies when there are no non-participants, there is a reserve

price of r(r∗) as the good is sold to a non-participant at the monopoly price of r∗ when

the highest virtual valuation among participants is below the monopoly revenue of π(r∗).

We can also interpret the optimal mechanism in the benchmark as the “unconstrained solu-

tion” to the mechanism design problem under stochastic participation, as the key incentive

compatibility constraint (3) in Definition 2 is missing.
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Under the unconstrained solution, the seller’s revenue from participants is

n(1−α)

(

∫ r(r∗)

r∗
(1− α)n−1F n−1(w)φ(w)f(w)dw+

∫ 1

r(r∗)

((1− α)F (w) + α)n−1φ(w)f(w)dw

)

,

and the revenue from non-participants is

n
∑

m=1

Bn
m(α)F

n−m(r(r∗))π(r∗) = (((1− α)F (r(r∗)) + α)n − (1− α)nF n(r(r∗)))π(r∗).

Compare the above with the revenue of an equal-priority mechanism given by (10), (7) and

(6).11 In response to the incentive compatibility constraint (3), the seller not only increases

the fixed-price offer to non-non-participants to above the monopoly price r∗, but also de-

creases the reserve price to below the optimum of r∗ and creates a pooling interval above

r∗ in the auction among participants even though the virtual valuation function is strictly

increasing. Relative to the unconstrained solution, under the optimal equal-priority mecha-

nism the seller may obtain a greater revenue from participants, but the gain is outweighed

by the loss in revenue from non-participants.12 Overall the seller faces a revenue loss under

the optimal equal-priority mechanism compared to the unconstrained solution.

Participants are better off under the optimal equal-priority auction than in the bench-

mark. Under the unconstrained solution, the interim expected payoff a participant with

valuation w is given by



















0 if w < r∗

∫ w

r∗
(1− α)n−1F n−1(x)dx if w ∈ [r∗, r(r∗)]

∫ r(r∗)

r∗
(1− α)n−1F n−1(x)dx+

∫ w

r(r∗)
((1− α)F (x) + α)n−1dx if w > r(r∗).

Compare the above with Uσ(w) given by (2) and (7). The incentive compatibility constraint

11We can obtain the revenue formula under the unconstrained solution from (10), as well as the formulas
for the interim payoffs of participants and non-participants below from (2) and from (9) respectively, by
replacing Qσ(w) with 0 for w < r∗, (1 − α)n−1Fn−1(w) for w ∈ [r∗, r(r∗)] and ((1 − α)F (w) + α)n−1 for
w > r(r∗), and replacing χ(w,w) with (((1 − α)F (r(r∗)) + α)n − (1− α)nFn(r(r∗)))/(nα).

12As we show below, the entire equal-priority interval [w,w] of participants is below the reserve price of
r(r∗) in the unconstrained solution. This implies that under the optimal equal-priority auction the good is
allocated to the participants with greater probabilities than under the constrained solution. See the example
of uniform valuation distribution below.
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(3) leads to the seller setting the reserve price r below r∗. Moreover, for all w ∈ [w,w] we

have

χ(w,w) > (1− α)n−1F n−1(w).

As we have shown in section 3.2, the optimal equal-priority mechanism has φ(w) < π(t) and

thus w < r(r∗). It follows that all participants with valuations above r are strictly better off

under the optimal equal-priority mechanism than in the benchmark. The gain in the interim

payoff of participants represents the information rent that the seller pays as a result of the

incentive compatibility constraint (3).

In contrast to participants who earn information rents, non-participants are hurt by

stochastic participation. Under the unconstrained solution, the interim expected payoff a

non-participant with valuation w is given by

n−1
∑

m=0

Bn−1
m (α)F n−m(r(r∗))

max{w − r∗, 0}
m+ 1

=(((1− α)F (r(r∗)) + α)n − (1− α)nF n(r(r∗)))
max{w − r∗, 0}

nα
.

Compare the above with Uµ(w) given by (9) and (6). The incentive compatibility constraint

(3) induces the seller to charge a price t to non-participants higher than r∗ under in the

benchmark. Moreover, since w < w < r(r∗), we have13

nαχ(w,w) < ((1− α)F (r(r∗)) + α)n − (1− α)nF n(r(r∗)).

Since non-participants face a higher price and have to share the equal-priority pool with

participants who have valuations from the interval [w,w], all non-participants with valuations

above r∗ are strictly worse off under the optimal equal-priority mechanism than in the

benchmark.

The relative simplicity of optimal equal-priority mechanisms allows us to gauge the sig-

nificance of stochastic participation relative to the benchmark. We use an explicit example

to illustrate. Suppose that the valuation distribution F is uniform on [0, 1], with r∗ = 1
2

13The right-hand side below is equal to α
∑n−1

j=0
((1 − α)F (r(r∗)) + α)n−1−j((1 − α)F (r(r∗)))j , while

nχ(w,w) =
∑n−1

j=0
((1 − α)F (w) + α)n−1−j((1− α)F (w))j .
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and r(r∗) = 5
8
. We can solve for the optimal equal-priority mechanism {r, w, w; t} as follows.

Define Λ = (φ(w) − φ(w))f(w); in this example, we have Λ = w − w.14 Since the three

first-order conditions (11), (12) and (13) are all independent of n, we can then proceed to

use the three conditions to solve for r, w, w and t, all as functions of Λ. The range of the

values of Λ is from the lower-bound of 0, which by (11), (12) and (13) implies that r = t = 1
2

and w = w = 5
8
, to an upper-bound Λ = α/(2

√
5− α + 4), at which point w − t becomes

0. Plugging in these functions in the binding constraint (8), we can find a unique value of

Λ̂ ∈ (0,Λ) for each n ≥ 2, and hence the optimal equal-priority mechanism.

In this example, the value of Λ̂ represents the optimal size of the equal-priority pool for

participants due to stochastic participation. For any fixed Bernoulli probability α that a

given buyer is a non-participant, Λ̂ is increasing in the number of potential buyers n. The

maximum size is Λ, which increases with α and is maximized at 1
8
when α = 1.15 For α = 1

2
,

the optimal size for n = 5 is approximately 0.059, already approaching the maximum size

of Λ ≈ 0.061. These numbers suggest that optimal equal-priority pools can be significant

under stochastic participation. As mentioned at the end of the introduction, ignoring the

impact of stochastic participation can significantly bias structural estimations of valuation

distributions in auctions.

In section 3.2, we have characterized the optimal equal-priority mechanisms when the

Bernoulli probability α goes to either 0 or 1. Although the mechanism does not converge

to the optimal auction of Myerson (1981) at α = 0 or the monopoly pricing at α = 1, the

seller’s revenue from the optimal equal-priority mechanism does converge to the correspond-

ing revenue. As a result, the seller faces little revenue loss under the optimal equal-priority

mechanism relative to the unconstrained solution when the value of α is extreme. In the

uniform example, it turns out that the percentage revenue loss relative to the unconstrained

solution is small even for intermediate values of α. For α = 1
2
, when n = 5, under the opti-

mal equal-priority mechanism the revenue from non-participants is about 0.081, compared to

about 0.088 under the unconstrained solution, while the revenue from participants is about

14The variable Λ has the interpretation of an arbitrary non-negative value of the multiplier associated with
the constraint (8), normalized by dividing by n.

15As we have shown in section 3.2, as α approaches 1, the upper-bound w of the optimal equal-priority
pool approaches r(r∗) and the lower-bound ω approaches r∗. For the uniform example, r(r∗)− r∗ = 1

8
.
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0.438 versus about 0.437. The overall percentage revenue loss relative to the unconstrained

solution is just over 1%.

Our example suggests that equal-priority mechanisms are quite effective responses to the

incentive problem in stochastic participation. Another way to see this is to consider changes

in the seller’s revenue under the optimal equal-priority auction for the same total number of

buyers n when the value of α decreases. For n = 5, we have seen that the seller’s optimal

revenue is 0.519 when α = 1
2
; it increases to 0.559 when α = 2

5
. This amounts to an almost

8% increase, in contrast to a just above 7% increase under the unconstrained solution for

the same decrease in α. The percentage increase in the revenue is greater under the optimal

equal-priority auction, because not only participants are more profitable for the seller to

trade with than non-participants, which is also true under the unconstrained solution, but

also the seller can reduce the information rent paid to participants. An interpretation of a

decrease in α is that seller invests resources to turn some non-participants into participants,

perhaps through “educating” potential buyers about how auctions work or making it more

convenient to participate in auctions. As suggested by our numerical example, the rate of

return for such investment can be substantial.

Stochastic participation can have significant effects on the welfare of participants and

non-participants. For n = 5 and α = 1
2
, the interim payoff of participants under the optimal

equal-priority mechanism, averaged over all valuations on [0, 1], is about 0.046. This is about

8% more than the average interim payoff of around 0.042 under the unconstrained solution,

representing a sizable information rent due to the incentive compatibility constraint (3). For

non-participants, the average interim payoff under the optimal equal-priority mechanism is

about 0.013, compared with about 0.018 under the unconstrained solution. The negative

impact of stochastic participation on the welfare of an average non-participant is similar

to the information rent to an average participant in magnitude, but in percentage terms

it is much higher, about 28%. This is because non-participants have a much lower average

interim payoff than participants under both the optimal equal-priority auction and under the

unconstrained solution. Indeed, if a non-participant could invest some resources to become

a participant, the rate of return for such investment would be quite high.
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5 Discussion

To generalize the notion of mechanism design with stochastic participation, it is useful to

think of an “outside market” where the seller can sell the good to buyers that do not par-

ticipate in the seller’s mechanism. Correspondingly, we can think of a direct mechanism

as specifying, for any profile of reported valuations by participants, whether the good is

allocated to a participant or sold in the outside market, and in case of the latter, a set

of participants to join the outside market along with all non-participants, together with a

price.16 The seller’s option of selling the good to the outside market creates an incentive

problem because would-be participants could instead join the outside market. As shown in

Theorem 1, an equal-priority auction is a solution to this problem, where participants with

valuations from an optimally chosen interval do indeed join the outside market, even though

the seller’s mechanism can make the interval depend on the size and the composition of the

outside market.

The optimality of an equal-priority auction does not rely on the specific structural as-

sumptions on the outside market that participants and non-participants are independently

drawn from a fixed number of potential buyers through a Bernoulli distribution, and have

valuations independently drawn from the same distribution. Imagine instead that there are

two independent Poisson processes that determine the realized numbers of participants and

non-participants, and these two groups of buyers draw their private valuations from differ-

ent distributions. As in the model of section 2, the seller faces the same incentive problem

by selling to the outside market, so long as the unconstrained solution similarly defined as

in section 4.2 – charging the monopoly price to a non-participant whenever the revenue is

higher than the highest virtual valuation of a participant – attracts deviations by partic-

ipants to the outside market. Since the numbers of participants and non-participants are

both random, there is no “forcing mechanism” that would allow the seller to solve the incen-

tive problem without paying an information rent to participants.17 Similar to Theorem 1, in

16As we have commented in section 2.1, for any direct mechanism that is incentive compatible with
respect to valuations, it is sufficient to specify probabilities of getting the good when the good is allocated
to a participant.

17If either or both numbers are deterministic, the seller could detect any deviations by participants and
commit to not selling the good when such a deviation occurs.
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the optimal mechanism the information rent takes the form of an interval of valuations so

that participants with any valuation on the interval have an equal allocation priority as non-

participants. Participants with valuations just above the interval have a higher allocation

priority than non-participants, even though their virtual valuation is lower than the revenue

the seller could obtain from the outside market.

In our model we have assumed that when the good is sold in the outside market it is done

through a take-it-or-leave-it offer to a randomly selected buyer in the market. Whether the

effect of inducing a participant to join the outside market, in terms of the revenue and the

information rent, is positive or negative depends neither on the size nor on the composition

of the current market.18 This feature of take-it-or-leave-it offers turns out to critical to the

optimality of equal-priority auctions.

Instead of making a take-it-or-leave-it offer, imagine that the seller uses a first-come-

first-served rule in the outside market. Under this rule, if a participant is included in the

outside market for some profile of reported valuations, then for any price chosen by the

seller that is below the participant’s valuation, the participant gets the good with the same

probability as all non-participants with valuations above the price. As a result, whether

a participant with a given valuation should be included in the outside market can depend

both on the size and the composition of the current market. To see this, suppose that the

current market consists of only non-participants, and thus the probability that the offer is

accepted increases in the size of the market. With a participant included in the market, the

offer is accepted with probability one. This implies that the effect of including a participant

in the market depends on it size. Further, for the same size of the current market, whether

it already includes at least one participant determines whether the probability that the offer

is accepted is one or less than one, and thus the effect of including an additional participant

in the market depends on its composition. Equal-priority auctions are generally not optimal

under a first-come-first-served rule in the outside market.

In the present model, we can restore the optimality of equal-priority auctions under a

18More precisely, in equation (15), for any multiplier function λ(·), and for any realized number of non-
participantm and any set of participants already included in the outside market, by inducing some participant
i with valuation vi to join the market, the sign of the effect on the Lagrangian depends only on whether
Kσ(vi) is greater or smaller than the value of the Lagrangian before i joins.
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first-come-first-served rule in the outside market by restricting the outside market to possibly

include only a single interval of valuations for participants and use only a single price,

regardless of the profile of reported valuations. Such restriction is more natural in the

aforementioned alternative model where the numbers of participants and non-participants

are determined by two independent Poisson distributions. One can imagine that the seller

cannot condition the decision of whether to sell the outside market or the choice of the first-

come-first-served price on the realized number of non-participants, because the seller never

observes the size of the market. Furthermore, in the alternative model the assumption that

the seller does not observe the size of the outside market may be sufficient to imply that it

is optimal to have a single equal-priority pool and a single price. We leave this conjecture

for future research.

6 Appendix: Omitted Proofs

Proof of Lemma 1

We verify that the expected payoff of a participant with valuation w matches Uσ(w) given

by (2) and (7). There are four cases.

(i) By truthfully reporting his valuation, a participant with w < r never wins the object,

and thus the expected payoff is 0, matching Uσ(w) in (7) and (2) for w < r.

(ii) By truthful reporting, a participant with w ∈ [r, w) wins the object only when m = 0

and all n− 1 other participants have valuation at most w, pays the maximum of r and the

second highest valuation. Thus, the expected payoff is

w(1− α)n−1F n−1(w)−
(

r(1− α)n−1F n−1(r) +

∫ w

r

x d
(

(1− α)n−1F n−1(x)
)

)

.

By integration by parts, the above matches Uσ(v) in (2) and (7) for v ∈ [r, w).

(iii) By truthful reporting, a participant with w ∈ [w,w] wins the object with probability

one when m = 0 and all n − 1 other participants have valuation at most w, and pays the

maximum of r and the second highest valuation. The contribution of this event to the buyer’s
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expected payoff is

w(1− α)n−1F n−1(w)−
(

r(1− α)n−1F n−1(r) +

∫ w

r

x d
(

(1− α)n−1F n−1(x)
)

)

=Uσ(w) + (w − w)(1− α)n−1F n−1(w).

The buyer also wins the object with probability 1/(m + k + 1) when there are m non-

participants, all n − m − 1 other participants have valuation at most w, and m + k is at

least 1 (where k is the number of participants with valuation on [w,w]), and pays w. The

contribution of this event to the buyer’s expected payoff is

(w − w)
(

χ(w,w)− (1− α)n−1F n−1(w)
)

.

The sum of the above two expressions matches Uσ(w) in (2) and (7) for w ∈ [w,w].

(iv) By truthful reporting, a participant with w > w wins the object with probability one

when m = 0 and the second highest bid is below w, and the partcipant pays the maximum

of the second highest bid and the reserve price r. The contribution to the expected payoff is

Uσ(w) + (w − w)(1− α)n−1F n−1(w).

The participant also wins with probability one when the second highest bid is below w and

when m+ k ≥ 1, and pays (w + w(m+ k))/(m+ k + 1). The contribution to the expected

payoff is

n−1
∑

m=0

Bn−1
m (α)

n−1−m
∑

k=0

Bn−1−m
k (w,w)

(

w − w + w(m+ k)

m+ k + 1

)

− (w − w)(1− α)n−1F n−1(w)

=(w − w)((1− α)F (w) + α)n−1 + (w − w)χ(w,w)− (w − w)(1− α)n−1F n−1(w).

Finally, the participant with w > w wins with probability one and pays the second highest

bid x when it is above w, which occurs with probability

n−1
∑

m=0

Bn−1
m (α)(F n−1−m(x)− F n−1−m(w)).
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By integration by parts, the contribution to the expected payoff is

∫ w

w

n−1
∑

m=0

Bn−1
m (α)(F n−1−m(x)− F n−1−m(w))dx

=

∫ w

w

n−1
∑

m=0

Bn−1
m (α)F n−1−m(x)dx− (w − w)((1− α)F (w) + α)n−1.

The sum of the three expressions for the contributions to the expected payoff matches Uσ(w)

in (2) and (7) for w > w.

Proof of Lemma 2

Fix an incentive compatible, optimal equal-priority mechanism {r, w, w; t} with r ≤ w ≤ w.

When r ≤ t ≤ w, define

D = Uσ(w)− Uµ(w) =

∫ w

r

(1− α)n−1F n−1(w)dw − χ(w,w)(w − t),

and let R be the revenue, given by (10). If 0 < r < w, or if 0 = r < w and dr > 0, or if

0 < r = w and dr < 0, we have

∂D

∂r
= −(1− α)n−1F n−1(r);

∂R

∂r
= −n(1 − α)nF n−1(r)φ(r)f(r).

If 0 < t < w, or 0 = t < w and dt > 0, or 0 < t = w and dt < 0, we have

∂D

∂t
= χ(w,w);

∂R

∂t
= nαχ(w,w)π′(t).
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If t < w < w, or if t = w < w and dw > 0, or t < w = w and dw < 0, we have

∂χ(w,w)

∂w
=

(1− α)f(w)

(1− α)(F (w)− F (w)) + α

(

χ(w,w)− ((1− α)F (w))n−1
)

;

∂D

∂w
= (1− α)n−1F n−1(w)− χ(w,w)− ∂χ(w,w)

∂w
(w − t);

∂R

∂w
= n(1− α)((1− α)n−1F n−1(w)− χ(w,w))φ(w)f(w)

+ n((1− α)(π(w)− π(w)) + απ(t))
∂χ(w,w)

∂w
.

If w < w < 1, or if w = w < 1 and dw > 0, or if w < w = 1 and dw < 0, we have

∂χ(w,w)

∂w
=

(1− α)f(w)

(1− α)(F (w)− F (w)) + α

(

((1− α)F (w) + α)n−1 − χ(w,w)
)

;

∂D

∂w
= −∂χ(w,w)

∂w
(w − t);

∂R

∂w
= n(1− α)

(

χ(w,w)− ((1− α)F (w) + α)n−1
)

φ(w)f(w)

+ n((1− α)(π(w)− π(w)) + απ(t))
∂χ(w,w)

∂w
.

The proof of the lemma is divided into seven steps.

(i) We claim that r ≤ t ≤ w. We can rule out t < r right away, because it violates (8). To

rule out t > w, note that in this case (8) is slack. From the expression of ∂R/∂t, concavity

of π(·) and the optimality of {r, w, w; t} together imply that t = r∗. If r < w, then since

w < t = r∗, we have r < r∗. From the expression of ∂R/∂r, a marginal increase in r would

increase the first term in (10), contradicting the optimality of {r, w, w; t}. Thus, r = w. If

w < w, then from the expression of ∂R/∂w, a marginal increase in w would increase the

revenue, contradicting the assumption of optimality. Thus, r = w = w < t = r∗. From

the expressions of ∂R/∂w and ∂R/∂w, a increase in w and w by the same marginal amount

would increase the revenue, a contradiction. Thus, t ≤ w.

(ii) We claim that r < t < w. We can rule out r = t < w right away, because it

violates (8). To rule out r < t = w, note that in this case (8) is slack. Since r < t,

either r < r∗ or t > r∗, or both. If r < r∗, then by raising r marginally, the seller could

increase the revenue because ∂R/∂r > 0. If t > r∗, then by lowering t marginally, the seller
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could increase the revenue because ∂R/∂t < 0. Either way, we have a contradiction to the

assumption of optimality. Finally, we rule out r = t = w. If r = t = w < r∗, then by

raising t marginally, the seller relaxes (8), and increases the revenue because ∂R/∂t > 0.

If r = t = w > r∗, then by lowering r marginally, the seller relaxes (8), and increases the

revenue because ∂R/∂r < 0. If r = t = w = r∗, then by lowering r marginally, the seller

relaxes (8) because ∂D/∂r < 0, without changing the revenue because ∂R/∂r = 0. With

(8) slack, the seller could then increase the revenue by either further raising w marginally if

w = r∗ < w, because φ(w) = 0 implies ∂R/∂w > 0, or by raising both w and w by the same

infinitesimal amount if w = w = r∗, because ∂R/∂w + ∂R/∂w > 0. In each case, we have a

contradiction to the assumption of optimality.

(iii) We claim that r < t < w < w. Suppose instead w = w = ŵ, and consider

decreasing both w and w by the same marginal amount. We have ∂D/∂w + ∂D/∂w < 0,

and ∂R/∂w + ∂R/∂w has the same sign as π(t) − φ(ŵ). Thus, we must have π(t) > φ(ŵ):

otherwise, the seller relaxes (8) without decreasing the revenue, which would then allow the

seller to increase the revenue by either raising r or lowering t, as r < t implies r < r∗ or

t > r∗, or both. Since φ(1) = 1, it follows from π(t) > φ(ŵ) that ŵ < 1. Consider perturbing

the equal-priority mechanism by reducing w from ŵ and raising w from ŵ such that

−(χ(ŵ, ŵ)− (1− α)n−1F n−1(ŵ))dw = (((1− α)F (ŵ) + α)n−1 − χ(ŵ, ŵ))dw.

By construction,

−∂χ(ŵ, ŵ)

∂w
dw =

∂χ(ŵ, ŵ)

∂w
dw.

This implies that (8) is relaxed, because

∂D

∂w
dw +

∂D

∂w
dw = ((1− α)n−1F n−1(ŵ)− χ(ŵ, ŵ))dw,

which is strictly positive. The seller’s revenue is unchanged, because

∂R

∂w
dw +

∂R

∂w
dw =n(1− α)f(ŵ)

(

χ(ŵ, ŵ)− (1− α)n−1F n−1(ŵ)
)

(π(t)− φ(ŵ))dw

+ n(1− α)f(ŵ)
(

((1− α)F (ŵ) + α)n−1 − χ(ŵ, ŵ)
)

(π(t)− φ(ŵ))dw,
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which is equal to 0 by construction. The seller could now increase the revenue by either

raising r or lowering t, as r < t implies r < r∗ or t > r∗, or both. This contradicts the

assumption of optimality.

(iv) We claim that (8) binds, r < r∗ < t, and π(t) > φ(w). If (8) is slack, then since

r < t implies that r < r∗ or t > r∗, or both, the seller could increase the revenue by either

raising r or lowering t, a contradiction to the assumed optimality. If r∗ ≤ r < t, the seller

could relax (8) by lowering r marginally without decreasing the revenue, which then would

allow the seller to increase the revenue by lowering t. Similarly, if r < t ≤ r∗, the seller could

relax (8) by raising t marginally without decreasing the revenue, which then would allow the

seller to increase the revenue by raising r. Finally, we show that π(t) > φ(w). Otherwise,

since ∂R/∂w has the same sign as

α(π(t)− φ(w)) + (1− α)(π(w)− π(w))− φ(w)(F (w)− F (w))

=α(π(t)− φ(w))−
∫ w

w

(φ(w)− φ(w))f(w)dw,

which is strictly less than α(π(t)−φ(w)), the seller can lower w marginally. This relaxes (8)

because ∂D/∂w < 0, and increases the revenue, contradicting the assumed optimality. Note

that π(t) > φ(w) implies w < 1.

(v) To obtain (11), consider perturbations dw and dw, while keeping r and t unchanged.

An optimality condition is that

∂R

∂w
dw +

∂R

∂w
dw = 0,

for all perturbations dw and dw satisfying

∂D

∂w
dw +

∂D

∂w
dw = 0.

Thus we have
∂R/∂w

∂D/∂w
=

∂R/∂w

∂D/∂w
.

Using the expressions for χ(w,w), ∂χ(w,w)/∂w and ∂χ(w,w)/∂w, straightforward algebra
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lead us to the first-order condition (11) for an optimal equal-priority mechanism with respect

to w and w.

(vi) To obtain (12), consider perturbations dt and dw. The optimality condition is

∂R/∂t

∂D/∂t
=

∂R/∂w

∂D/∂w
.

By (11), we have
∂R/∂w

∂D/∂w
= −n(1− α)(φ(w)− φ(w))f(w).

Combining the above two equations, we have the first order condition (12).

(vii) Lastly, to obtain (13), consider perturbations dr and dw, while keeping t and w

unchanged. The resulting optimality condition is

∂R/∂r

∂D/∂r
≥ ∂R/∂w

∂D/∂w
,

and r ≥ 0, with complementary slackness. Using (11), we have the following first-order

condition

−φ(r)f(r) ≤ (φ(w)− φ(w))f(w),

and r ≥ 0, with complementary slackness. Since −φ(0)f(0) = 1, and since (11) implies that

φ(w) < π(t) < t < w,

(φ(w)− φ(w))f(w) = (φ(w)− w)f(w) + 1− F (w) < 1.

It follows that the optimal r is interior and so (13) holds.

Proof of Lemma 3

Fix a direct mechanism (qσm, p
σ
m)

n−1
m=0 and (qµm, p

µ
m)

n

m=1. Define pµ ∈ [0, 1] to be the expected

offer to non-participants, given by

n−1
∑

m=0

Bn−1
m (α)Ev[q

µ
m+1(v)(p

µ − pµm+1(v))] = 0.
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Since max{w − p, 0} is convex in p for any w,

Uµ(w) =

n−1
∑

m=0

Bn−1
m (α)Ev

[

qµm+1(v)max{w − pµm+1(v), 0}
]

≥
n−1
∑

m=0

Bn−1
m (α)Ev[q

µ
m+1(v)]max{w − pµ, 0}.

Thus, replacing all functions {pµm(·)}nm=1 with a single offer pµ reduces the deviation payoff

of a participant. The seller’s revenue from non-participants is

n
∑

m=1

Bn
m(α)Ev [mqµm(v)π (pµm(v))] = nα

n−1
∑

m=0

Bn−1
m (α)Ev

[

qµm+1(v)π
(

pµm+1(v)
)]

.

The lemma then follows from the strict concavity of π(·).

Proof of Theorem 1

Suppose that {r, w, w; t} is an optimal equal-priority mechanism. By Lemma 2, the first

order conditions (11)-(13) are satisfied. We construct a non-negatively valued multiplier

function λ(w) for all w ∈ [0, 1] such that the allocative rule (qσm(v))
n−1
m=0 and (qµm(v))

n

m=1

defined by {r, w, w; t}, together with pµ = t, solves the Lagrangian relaxation. By Lemma

1, the offer rule (pσm(v))
n−1
m=0 we have specified for an equal-priority mechanism supports a

truthful reporting equilibrium among participants. The conclusion then follows immediately.

The proof is divided into four steps.

(i) Construction of the multiplier function. Let λ(w) = 0 for all w 6∈ [w,w], and let

λ(w) = n(1− α)
d

dw
(f(w)(φ(w)− φ(w))) = n(1− α)(2f(w) + f ′(w)(w − φ(w)))

for all w ∈ [w,w]. Since f(w)φ(w) is strictly increasing in w by Assumption 1 and since

φ(w) > 0, using the first expression of λ(w) above we have λ(w) > 0 at any w ∈ [w,w]

such that f ′(w) ≤ 0. Since φ(w) < π(t) by (11), and since w ≥ w > t > π(t), using the

second expression we have λ(w) > 0 at any w ∈ [w,w] such that f ′(w) > 0. Thus, λ(w) as

constructed is non-negative for any w.
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(ii) We claim that pµ = t maximizes Kµ, and hence the Lagrangian (15). For any

w ∈ [w,w], by construction

∫ 1

w

λ(x)dx = n(1− α)f(w)(φ(w)− φ(w)).

Using integration by parts, we have

∫ 1

0

λ(w)max{w − pµ, 0}dw

=−
∫ w

w

(w − pµ) d

(
∫ 1

w

λ(x)dx

)

=n(1− α)

(

(w − pµ)f(w)(φ(w)− φ(w)) +

∫ w

w

f(w)(φ(w)− φ(w))dw

)

By (11), we have

Kµ = nαφ(w) + nα(π(pµ)− π(t)) + (pµ − t)n(1− α)f(w)(φ(w)− φ(w)).

The above is strictly concave in pµ. By (12), it is maximized at pµ = t, with the maximum

Kµ
t = nαφ(w).

(iii) Comparison of Kσ(·) and Kµ
t . First, for w ∈ [w,w], by construction we have

Kσ(w) = n(1− α)φ(w) +

∫ 1

w

λ(w)dw/f(x) = n(1− α)φ(w).

Thus,
Bn−1

m (α)

n−m
Kσ(w) =

Bn−1
m−1(α)

m
Kµ

t .

Second, for all w > w, we have

Kσ(w) = n(1− α)φ(w).

Since w > r∗ and Assumption 1 implies that φ(w) is strictly increasing for all w > r∗, we
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have that Kσ(w) is strictly increasing. As a result,

Kσ(w) > n(1− α)φ(w) = Kσ(w),

and so
Bn−1

m (α)

n−m
Kσ(w) >

Bn−1
m−1(α)

m
Kµ

t .

Third, for all w < w,

Kσ(w) = n(1− α)φ(w) +
1

f(w)

∫ w

w

λ(x)dx

= n(1− α)φ(w) + n(1 − α)
f(w)(φ(w)− φ(w))

f(w)
.

By Assumption 1, Kσ(w) can cross 0 only once and only from below. Taking derivatives, we

have that dKσ(w)/dw has the same sign as

−π′′(w)f(w)− f ′(w)(f(w)φ(w) + f(w)(φ(w)− φ(w)).

Thus, at any w < w such that Kσ(w) > 0, we have Kσ(w) is strictly increasing if f ′(w) < 0.

At any w < w such that f ′(w) ≥ 0, since

φ(w) +
f(w)(φ(w)− φ(w))

f(w)
= w − 1− F (w)− f(w)(φ(w)− φ(w))

f(w)
,

and since in part (vii) of the proof of Lemma 2 we have shown that f(w)(φ(w)− φ(w)) < 1,

again we have Kσ(w) is strictly increasing. It follows that for all w < w

Kσ(w) < n(1− α)φ(w) = Kσ(w),

and so
Bn−1

m (α)

n−m
Kσ(w) ≤ Bn−1

m−1(α)

m
Kµ

t .

(iv) We claim that the allocations (qσm(v))
n−1
m=0 and (qµm(v))

n

m=1 specified by {r, w, w; t} are

a point-wise maximizer of the Lagrangian relaxation (15), withKµ replaced by its maximized
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value of Kµ
t from step (ii).

First, consider poin-wise maximization of the middle term in (15) for any fixed realized

number m of non-participants, with 1 ≤ m ≤ n−1. Suppose that for some realized valuation

profile v we have vi > w for some i = 1, . . . , n−m, but qµm(v) > 0. By (1), we can decrease

qµm(v) marginally by dqµm(v) > 0 and increase qσm(ρ
i
m(v)) by mdqµm(v). Since

m

n−m
Bn−1

m (α)Kσ(vi) > Bn−1
m−1(α)K

µ
t ,

the effect on the seller’s revenue is strictly positive. Therefore, qµm(v) = 0 for any v such

that vi > w for some i = 1, . . . , n−m. By the same argument, it is point-wise maximizing

to set qσm(ρ
i
m(v)) = 0 for any vi < w, and qµm(v) = qσm(ρ

i
m(v)) for any vi ∈ [w,w]. The claim

regarding point-wise maximization of the middle term in (15) follows immediately, because

by (iii), Kσ(w) is equal to the positive constant Kµ
t for w ∈ [w,w], is strictly less than Kσ(w)

for w < w, and is strictly increasing for any w > w.

Second, consider the first term in the Lagrangian (15), with m = 0. By (iii), Kσ(w)

crosses 0 only once and only from below, and is strictly increasing for w < w such that

Kσ(w) > 0. Further, Kσ(w) is equal to the positive constantKµ
t for w ∈ [w,w], and is strictly

increasing for any w > w. Thus, for r that satisfies (13), it is point-wise maximizing to set

qσ0 (ρ
i
0(v)) = 1 if vi = max{v1, . . . , vn} and vi > w, or if vi = max{v1, . . . , vn} and vi ∈ [r, w);

set qσ0 (ρ
i
0(v)) = 1/k if vi ∈ [w,w], max{v1, . . . , vn} ∈ [w,w] and #{j : vj ∈ [w,w]} = k; and

set qσ0 (ρ
i
0(v)) = 0 otherwise.

For m = n and the last term in the Lagrangian (15), it is optimal to set qµn = 1/n because

Kµ
t > 0.
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