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LECTURE 8. AUCTIONS AND MECHANISM DESIGN

1. Auctions

e Auction is a commonly used way of allocating indivisible goods

among interested buyers.

— Used cameras, Salvator Mundi, and spectrum auctions.

— Online platforms (Amazon, eBay) have increased popularity

of auctions in the modern digital economy.



Classification of auctions.

e Open outcry versus sealed bid.

— Best known open outcry: English, Dutch auctions.

e Hirst-price versus second-price.

— In sealed bid auctions, highest bidder wins but price depends

on rule.

e Private value versus common value.

— Distinction in auction environment rather than rules.



1.1. Private value auctions

e Second price, sealed bid auctions with private values.

— Each bidder ¢, ¢ = 1,..., N, values an object for sale at
v;; each ¢ knows own valuation v;, but not any other v;,
j # i; each 7 submits a bid b; independently; bidder ¢ wins
the auction if b; is higher than all other b;, j # ¢, wins with
equal probability if b; is among the highest, and otherwise
loses; payoft to each ¢ is v; — p if ¢ wins, where p is the highest

losing bid, and 0 otherwise.



e This is a complex Bayesian game.

— To set it up, we will need to specity what each bidder 7 knows

about how each v;, j # ¢, is distributed.
— Type of each bidder 7 is own valuation v;.
— A bidding strategy of each ¢ specifies bid b; depending on v;.

e Regardless how we specify the Bayesian game, there is a weakly

dominant strategy for each i: bidding b; = v; weakly dominates

all other bids.



e Bidding one’s own valuation is a weakly dominant strategy.

— Fix any bidder ¢, and fix any valuation v;.

— Denote as b the highest outstanding bid; this is the price ¢
pays if ¢ wins the auction.

— Bidding b; > v; is weakly dominated by b; = v;: they give
the same payoft when b < v;, when b = v;, and when b > b;,

but b; > v; is strictly worse than b; = v; when v; < b < b;.

— Bidding b; < v; is weakly dominated by b; = v;.



e [irst price, sealed bid auctions with private values.

— Each bidder ¢, ¢ = 1,..., N, values an object for sale at
v;; each ¢ knows own valuation v;, but not any other v;,
J # 1; each ¢ submits a bid b; independently; bidder ¢ wins
the auction if b; is higher than all other b;, j # ¢, wins with
equal probability if b; is among the highest, and otherwise

loses; payoft to each 7 is v; — b; if 7 wins.



e There is no weakly dominant bidding strategy:.

— Bidding one’s own valuation is weakly dominated by bidding

below it; so is bidding above it.

e [quilibrium bidding strategy involves shading the bid, i.e., bidding

below one’s own valuation.

— To analyze how much one should shade the bid, we need to

specify the Bayesian game in greater detail.



e A Bayesian game.

— Suppose that N = 2.

— Each bidder 72, + = 1,2, privately and independently draws

valuation v; from uniform distribution over interval [0, 1].

— Two properties of uniform distribution: the probability that
v; lies on any subinterval from [0, 1] is given by the length of
the interval; and the average is given by the mid point of the

subinterval.



e A Bayesian Nash equilibrium: each bidder 2 uses bidding strategy
1
bz' = §Ui-

— Fix any bidder 7, and fix any valuation v;.

— Any bid b; wins when b; > b; = %vj, 1.e. when v; < 2b;, so b;

wins with probability 2b;, with expected payoff 2b;(v; — b;).

— The expected payoft is maximized by setting b; = %vi.



1.2. Common values and winner’s curse

e Second price, sealed bid auctions with common values.

— Bach bidder 7, 7 = 1, 2, receives a private estimate s; between
0 and 1 of the value of the object for sale; each 7 observes s;,
and believes that s;, j # 4, is uniform between 0 and 1; each

¢’s valuation v; = s; +as;, with a a known constant between

0 and 1.

— Parameter a represents degree of common value, with a = 1

being the case of “pure” common value.
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e Winner’s curse.

— Suppose each bidder ¢ bids expected valuation given one’s

own estimate: b(s;) = s; + as.
— Fix 7 and s;.
— Probability of winning is s;.
— Expected valuation conditional on winning is s; + a%si.
— Expected price paid conditional on winning is %S@' + Oz%.

— Expected payoft conditional on winning is difference, which

is negative for s; < a /(1 + «).
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e A Bayesian Nash equilibrium: b(s;) = s; + as;.

— Fix ¢ and s;, and consider any b;.

— Probability of winning is b;/(1 4+ «).

— The expected valuation conditional on winning is given by
si+aghi/(1+a).

— Expected price paid conditional on winning is %bi.

— Expected payoft, which is the probability of winning times the
difference of the expected valuation and the expected price

conditional on winning, is maximized at b; = (1 + «)s;.
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2. Mechanism design

e Consider two-type, independent private value, first price auction.
e [ssecond price auction better than first price auction for the seller?
e Can any auction do better?

e What is the optimal auction?
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2.1. First price auction

e Bayesian game of first price auction:

— Players: Bidder 1 and Bidder 2.

— Type space is T; = {vy, v} for i = 1,2, with independence:
pi(vyg) = py and p;(vy) = py, for each i =1, 2.

— Action space A; = [0, 00) for each ¢ = 1,2: denote a typical
element as b;.

— For each i # 7 = 1,2, payoff function u;(by, by; v;) of Bidder

11s v; — b; if b; > b; l(vi—bi) isz':bj, and 0 1f b; < bj.

Jr 2
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e Pure strategy Bayesian Nash equilibrium does not exist.
— Suppose (b*(vy), b*(vy)) is a symmetric BNE.

— b*(vp) solves maxy, prui(by, b*(vy); v )+prui (b, b*(vr); ve),

and b* (v ) solves maxy, pruy(by, b*(vy); vr)+prui(br, b*(vr); vr).
— b*(vp) <wpand b*(vy) < vy
— b*(UH> < vp.

— Profitable unilateral deviation for type vy to just above b*(vy),

a contradiction.
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e Mixed strategies in Bayesian games are defined as in static games
of complete information: m; is a mixed strategy if m;(¢;) is a

probability distribution over A; for each t; € T;.

— Mixed strategy BNE m* = (mj,...,m") is defined in the

n
same way in static games of complete information.

— As in static games of complete information, in any mixed
strategy Bayesian Nash equilibrium m*, if type t; of player
¢ randomizes over A;, then he must be indifferent among all
actions that receive positive probabilities from m} and weakly

prefer any such action to all other actions in A;.
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e For present Bayesian game, we will show there is a symmetric

mixed strategy Bayesian Nash equilibrium given by:

— Type vy, bids vy, (pure strategy).

— Type vy randomizes according to some continuous function
F(b) on (vg,v|, where ¥ = pyvg + prvr and F(b) denotes

the probability bid is no greater than some b.
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e For type vy to mix among (vg, ], he must be indifferent among

all b € (UL,@].

— For any b € (vy, 9], type vg's expected payoff is

pr(vg —b) + prF(b)(vg —b).

— Using b = vy, we find F(b) = [pr(b — vr)|/|pr(vg — b)].

— Note F(vg) =0 and F(v) = 1.

e Verify symmetric Bayesian Nash equilibrium.
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e Bidders’ equilibrium payofis.

— Type v ’s payoft is 0: regardless of getting the object or not.

— Type vy’s payoff is pr(vg —vy): maximum payoff when meet-

ing type vz, and zero payoftf when meeting type vg.
e Seller’s revenue is (1 — p%;)vr + pHoy.

— Total surplus minus 2 times each bidder’s expected payoft:

p%UL + (1 — pQL)UH — 2pHpL<UH — UL)-
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2.2. Other auctions

Second price auction: highest bid wins but pays the second highest bid.

e Bidding one’s own valuation is weakly dominant regardless of the

distribution of opponent’s valuation.

e In the two-type example above, seller’s expected revenue is same as

in first-price auction: pFvp+2prpyvr+pivy = (1—pH)vL+pvy.

e Revenue equivalence: in both first price and second price auctions,

types vy, and vy get same payofls.
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e Consider the following game where bidders announce their type

(instead of bidding):

— If both bidders announce v, each pays v; and gets object

with probability %

— If both bidders announce vy, each pays vy and gets object

with probability %

— If one announces vy and the other vy, the former wins and

pays %(UH + vp), and the latter pays nothing.
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e Verify truth-telling is a Bayesian Nash equilibrium.

— Type vy, is strictly better off reporting truthfully, rather than
lying.

— Type vy is indifferent between telling the truth and lying.

e Seller’s revenue is

p%UL =+ 2prH§<’UH +vp) + p%[’UH = PHVUH + PLUL.

— Greater than in first and second price auctions.
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2.3. Optimal auction design problem

An optimization problem.
e Objective is to maximize the seller’s revenue.

e Design instrument is mechanism, a Bayesian game for bidders.
— Players, types, feasible allocations, payoft functions, are given.
— Action space, assignment, payment rules are designed.

e Constraints on optimization problem

— Bidders participate voluntarily (individual rationality), and

play a BNE (incentive compatibility).
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2.4. Mechanism design

e Mechanism design problem in general.

— Players: 1 =1,...,n.

— T;: type space for each ¢, with T" = T} x ... x T}, and

probability function p.
— Y set of feasible allocations.

— wu;(y; t): vNM payoft function of player 1.
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e Mechanism

— A;: action space for each player.
— ¢: outcome mapping from A; X ... X A, to Y.

— Stochastic mechanism: ¢ maps action profiles to distribution

over Y.

— Direct mechanism: A; = T; for each 7, so each ¢ announces

his type.
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e Any mechanism, direct or indirect, defines a Bayesian game.
— Strategy s; of each player ¢ is a mapping from T; to to A;.
— Outcome g(s1(t1), ..., Su(ty)) is a mapping from T to Y.

e Proposition (Revelation principle) If s* is BNE in a mechanism

((A;), g), then there is a truthful BNE in the direct mechanism

((T3), 9(s7)).

— Suffices to consider direct mechanisms.

— Suffices to consider truthful BNE in direct mechanisms.
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Proof. Since s* is a Bayesian Nash equilibrium in a mechanism ((4;), g),

t—i

for each 7 and each ¢;. Then

ti € argmax »_ wig(si(t:), sZi(t-0)); tis t-a)p(t-ilt:).
1 t_;

So truth-telling is a BNE in the direct mechanism ((73), g(s*)). The
outcome of this truth-telling equilibrium is g(s*), which is the same as

the outcome in the BNE s* in the original mechanism ((A;), g).
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. Optimal auction

e In the two-bidder, two-value auction problem, denote a symmetric

direct mechanism as ((zgm, yom), (Tur, yur), (Trm, you), (Too, yor))-

— x: probability of type t getting the object if announced type

profile is (vy, vy), where t,t' = H, L.

— Y. payment to the seller by type t if announced type profile

is (vg, vy), where t,t' = H, L.

e Objective: maximize 2(py (Pryur+rryuL)+rLPeyLg+pLyLL)).
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e Constraints:

— Feasibility: 2oy <1, 221 <1,z +xg < 1.

— Individual rationality IR; for each type v;, where t = H, L:

pr(vixig — yra) + pr(viaee, — yi) > 0.

— Incentive compatibility I1C; for each type vy, t' #£t = H, L:

pr(viriy — yrm) + pr(vee, — yer)

>pa(ViZyy — Yrm) + pr(vieyr — Yer).
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e Rewrite optimal auction problem.

— Define Xy = pyxig +prair, and Yy = ppyrg +pryqr for each
t=H. L

— Mechanism: ((Xy, Yy), (X3, Y7)).

— Objective: 2(pgYy + prY1).

— Feasibility constraints: Xz < %pH + o, X < pg + %pL;
puXp+prXp <3

— IRy v Xy — Y, >0tforeacht = H, L.

— IC;: v X; =Y, > v Xy — Yy foreach t 4t = H, L.
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e Constraints analysis
— IR} and ICy imply IRg.
— IR binds at optimum.
— ICy binds at optimum.
— ICy and IC,, imply Xy > X|.

— Xy > X and binding ICy imply 1Cy.
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Rewrite optimization problem.

— IRL binds: YL — ULXL.
— [Cy binds: Yy = YL—H)H(XH—XL) = ?JLXL+UH<XH—XL).
— Choice variables are Xy and X.

— Objective is

2pp(ve X +vp( Xy — X1)) + prorXy)

=2(vgpuyXu + (v, — prvn)Xy1).

— Only constraints are feasibility.
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Solution: optimal auction.

o Case (i): v > pyvy.
— Maximizing Xy gives Xy = %pH +pr and X = %pL.
— Revenue under optimal auction: pgvg + prvr.

o Case (ii): v; < pyvy.

— X1, =0 (type vy, is excluded) and Xy = %pH + pr.

— Revenue under optimal auction: (1 — p?)vy.
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