Econ 421 Fall, 2023 Li, Hao UBC

Lecture 8. Auctions and Mechanism Design

1. Auctions

- Auction is a commonly used way of allocating indivisible goods among interested buyers.
 - Used cameras, Salvator Mundi, and spectrum auctions.
 - Online platforms (Amazon, eBay) have increased popularity of auctions in the modern digital economy.

Classification of auctions.

- Open outcry versus sealed bid.
 - Best known open outcry: English, Dutch auctions.
- First-price versus second-price.
 - In sealed bid auctions, highest bidder wins but price depends on rule.
- Private value versus common value.
 - Distinction in auction environment rather than rules.

1.1. Private value auctions

• Second price, sealed bid auctions with private values.

- Each bidder i, i = 1, ..., N, values an object for sale at v_i ; each i knows own valuation v_i , but not any other v_j , $j \neq i$; each i submits a bid b_i independently; bidder i wins the auction if b_i is higher than all other $b_j, j \neq i$, wins with equal probability if b_i is among the highest, and otherwise loses; payoff to each i is $v_i - p$ if i wins, where p is the highest losing bid, and 0 otherwise.

- This is a complex Bayesian game.
 - To set it up, we will need to specify what each bidder i knows about how each v_j , $j \neq i$, is distributed.
 - Type of each bidder i is own valuation v_i .
 - A bidding strategy of each *i* specifies bid b_i depending on v_i .
- Regardless how we specify the Bayesian game, there is a weakly dominant strategy for each i: bidding $b_i = v_i$ weakly dominates all other bids.

- Bidding one's own valuation is a weakly dominant strategy.
 - Fix any bidder i, and fix any valuation v_i .
 - Denote as b the highest outstanding bid; this is the price i pays if i wins the auction.
 - Bidding $b_i > v_i$ is weakly dominated by $b_i = v_i$: they give the same payoff when $b < v_i$, when $b = v_i$, and when $b > b_i$, but $b_i > v_i$ is strictly worse than $b_i = v_i$ when $v_i < b \le b_i$.
 - Bidding $b_i < v_i$ is weakly dominated by $b_i = v_i$.

- First price, sealed bid auctions with private values.
 - Each bidder i, i = 1, ..., N, values an object for sale at v_i ; each i knows own valuation v_i , but not any other v_j , $j \neq i$; each i submits a bid b_i independently; bidder i wins the auction if b_i is higher than all other $b_j, j \neq i$, wins with equal probability if b_i is among the highest, and otherwise loses; payoff to each i is $v_i b_i$ if i wins.

- There is no weakly dominant bidding strategy.
 - Bidding one's own valuation is weakly dominated by bidding below it; so is bidding above it.
- Equilibrium bidding strategy involves shading the bid, i.e., bidding below one's own valuation.
 - To analyze how much one should shade the bid, we need to specify the Bayesian game in greater detail.

- A Bayesian game.
 - Suppose that N = 2.
 - Each bidder i, i = 1, 2, privately and independently draws valuation v_i from uniform distribution over interval [0, 1].
 - Two properties of uniform distribution: the probability that v_i lies on any subinterval from [0, 1] is given by the length of the interval; and the average is given by the mid point of the subinterval.

• A Bayesian Nash equilibrium: each bidder *i* uses bidding strategy $b_i = \frac{1}{2}v_i.$

- Fix any bidder i, and fix any valuation v_i .

- Any bid b_i wins when $b_i > b_j = \frac{1}{2}v_j$, i.e. when $v_j < 2b_i$, so b_i wins with probability $2b_i$, with expected payoff $2b_i(v_i - b_i)$.

- The expected payoff is maximized by setting $b_i = \frac{1}{2}v_i$.

1.2. Common values and winner's curse

- Second price, sealed bid auctions with common values.
 - Each bidder i, i = 1, 2, receives a private estimate s_i between 0 and 1 of the value of the object for sale; each i observes s_i , and believes that $s_j, j \neq i$, is uniform between 0 and 1; each i's valuation $v_i = s_i + \alpha s_j$, with α a known constant between 0 and 1.
 - Parameter α represents degree of common value, with $\alpha = 1$ being the case of "pure" common value.

- Winner's curse.
 - Suppose each bidder *i* bids expected valuation given one's own estimate: $b(s_i) = s_i + \alpha \frac{1}{2}$.
 - Fix i and s_i .
 - Probability of winning is s_i .
 - Expected valuation conditional on winning is $s_i + \alpha \frac{1}{2} s_i$.
 - Expected price paid conditional on winning is $\frac{1}{2}s_i + \alpha \frac{1}{2}$.
 - Expected payoff conditional on winning is difference, which is negative for $s_i < \alpha/(1+\alpha)$.

- A Bayesian Nash equilibrium: $b(s_i) = s_i + \alpha s_i$.
 - Fix i and s_i , and consider any b_i .
 - Probability of winning is $b_i/(1+\alpha)$.
 - The expected valuation conditional on winning is given by $s_i + \alpha \frac{1}{2} b_i / (1 + \alpha).$
 - Expected price paid conditional on winning is $\frac{1}{2}b_i$.
 - Expected payoff, which is the probability of winning times the difference of the expected valuation and the expected price conditional on winning, is maximized at $b_i = (1 + \alpha)s_i$.

2. Mechanism design

- Consider two-type, independent private value, first price auction.
- Is second price auction better than first price auction for the seller?
- Can any auction do better?
- What is the optimal auction?

2.1. First price auction

- Bayesian game of first price auction:
 - Players: Bidder 1 and Bidder 2.
 - Type space is $T_i = \{v_H, v_L\}$ for i = 1, 2, with independence: $p_i(v_H) = p_H$ and $p_i(v_L) = p_L$, for each i = 1, 2.
 - Action space $A_i = [0, \infty)$ for each i = 1, 2: denote a typical element as b_i .
 - For each $i \neq j = 1, 2$, payoff function $u_i(b_1, b_2; v_i)$ of Bidder i is $v_i - b_i$ if $b_i > b_j$, $\frac{1}{2}(v_i - b_i)$ if $b_i = b_j$, and 0 if $b_i < b_j$.

- Pure strategy Bayesian Nash equilibrium does not exist.
 - Suppose $(b^*(v_H), b^*(v_L))$ is a symmetric BNE.
 - $b^{*}(v_{H}) \text{ solves } \max_{b_{1}} p_{H}u_{1}(b_{1}, b^{*}(v_{H}); v_{H}) + p_{L}u_{1}(b_{1}, b^{*}(v_{L}); v_{H}),$ and $b^{*}(v_{L}) \text{ solves } \max_{b_{1}} p_{H}u_{1}(b_{1}, b^{*}(v_{H}); v_{L}) + p_{L}u_{1}(b_{1}, b^{*}(v_{L}); v_{L}).$
 - $-b^*(v_L) \leq v_L$ and $b^*(v_H) \leq v_H$.
 - $-b^*(v_H) < v_H.$
 - Profitable unilateral deviation for type v_H to just above $b^*(v_H)$, a contradiction.

- Mixed strategies in Bayesian games are defined as in static games of complete information: m_i is a mixed strategy if $m_i(t_i)$ is a probability distribution over A_i for each $t_i \in T_i$.
 - Mixed strategy BNE $m^* = (m_1^*, \dots, m_n^*)$ is defined in the same way in static games of complete information.
 - As in static games of complete information, in any mixed strategy Bayesian Nash equilibrium m^* , if type t_i of player i randomizes over A_i , then he must be indifferent among all actions that receive positive probabilities from m_i^* and weakly prefer any such action to all other actions in A_i .

- For present Bayesian game, we will show there is a symmetric mixed strategy Bayesian Nash equilibrium given by:
 - Type v_L bids v_L (pure strategy).
 - Type v_H randomizes according to some continuous function F(b) on $(v_L, \overline{v}]$, where $\overline{v} = p_H v_H + p_L v_L$ and F(b) denotes the probability bid is no greater than some b.

• For type v_H to mix among $(v_L, \overline{v}]$, he must be indifferent among all $b \in (v_L, \overline{v}]$.

- For any $b \in (v_L, \overline{v}]$, type v_H 's expected payoff is

$$p_L(v_H - b) + p_H F(b)(v_H - b).$$

- Using
$$b = v_L$$
 we find $F(b) = [p_L(b - v_L)]/[p_H(v_H - b)].$

- Note
$$F(v_L) = 0$$
 and $F(\overline{v}) = 1$.

• Verify symmetric Bayesian Nash equilibrium.

- Bidders' equilibrium payoffs.
 - Type v_L 's payoff is 0: regardless of getting the object or not.
 - Type v_H 's payoff is $p_L(v_H v_L)$: maximum payoff when meeting type v_L , and zero payoff when meeting type v_H .
- Seller's revenue is $(1 p_H^2)v_L + p_H^2v_H$.
 - Total surplus minus 2 times each bidder's expected payoff: $p_L^2 v_L + (1 - p_L^2) v_H - 2p_H p_L (v_H - v_L).$

2.2. Other auctions

Second price auction: highest bid wins but pays the second highest bid.

- Bidding one's own valuation is weakly dominant regardless of the distribution of opponent's valuation.
- In the two-type example above, seller's expected revenue is same as in first-price auction: $p_L^2 v_L + 2p_L p_H v_L + p_H^2 v_H = (1-p_H^2)v_L + p_H^2 v_H$.
- Revenue equivalence: in both first price and second price auctions, types v_L and v_H get same payoffs.

- Consider the following game where bidders announce their type (instead of bidding):
 - If both bidders announce v_L , each pays v_L and gets object with probability $\frac{1}{2}$.
 - If both bidders announce v_H , each pays v_H and gets object with probability $\frac{1}{2}$.
 - If one announces v_H and the other v_L , the former wins and pays $\frac{1}{2}(v_H + v_L)$, and the latter pays nothing.

- Verify truth-telling is a Bayesian Nash equilibrium.
 - Type v_L is strictly better off reporting truthfully, rather than lying.
 - Type v_H is indifferent between telling the truth and lying.
- Seller's revenue is

$$p_L^2 v_L + 2p_L p_H \frac{1}{2} (v_H + v_L) + p_H^2 v_H = p_H v_H + p_L v_L.$$

- Greater than in first and second price auctions.

2.3. Optimal auction design problem

An optimization problem.

- Objective is to maximize the seller's revenue.
- Design instrument is *mechanism*, a Bayesian game for bidders.
 - Players, types, feasible allocations, payoff functions, are given.
 - Action space, assignment, payment rules are designed.
- Constraints on optimization problem
 - Bidders participate voluntarily (individual rationality), and play a BNE (incentive compatibility).

2.4. Mechanism design

• Mechanism design problem in general.

- Players: i = 1, ..., n.

- T_i : type space for each i, with $T = T_1 \times \ldots \times T_n$, and probability function p.
- Y: set of feasible allocations.
- $u_i(y;t)$: vNM payoff function of player *i*.

- Mechanism
 - $-A_i$: action space for each player.
 - -g: outcome mapping from $A_1 \times \ldots \times A_n$ to Y.
 - Stochastic mechanism: g maps action profiles to distribution over Y.
 - Direct mechanism: $A_i = T_i$ for each i, so each i announces his type.

- Any mechanism, direct or indirect, defines a Bayesian game.
 - Strategy s_i of each player *i* is a mapping from T_i to to A_i .
 - Outcome $g(s_1(t_1), \ldots, s_n(t_n))$ is a mapping from T to Y.
- **Proposition** (Revelation principle) If s^* is BNE in a mechanism $\langle (A_i), g \rangle$, then there is a truthful BNE in the direct mechanism $\langle (T_i), g(s^*) \rangle$.
 - Suffices to consider direct mechanisms.
 - Suffices to consider truthful BNE in direct mechanisms.

Proof. Since s^* is a Bayesian Nash equilibrium in a mechanism $\langle (A_i), g \rangle$,

$$s_i^*(t_i) \in \arg\max_{a_i} \sum_{t_{-i}} u_i(g(a_i, s_{-i}^*(t_{-i})); t_i, t_{-i})p(t_{-i}|t_i)$$

for each i and each t_i . Then

$$t_i \in \arg\max_{t'_i} \sum_{t_{-i}} u_i(g(s_i^*(t'_i), s_{-i}^*(t_{-i})); t_i, t_{-i})p(t_{-i}|t_i).$$

So truth-telling is a BNE in the direct mechanism $\langle (T_i), g(s^*) \rangle$. The outcome of this truth-telling equilibrium is $g(s^*)$, which is the same as the outcome in the BNE s^* in the original mechanism $\langle (A_i), g \rangle$.

3. Optimal auction

- In the two-bidder, two-value auction problem, denote a symmetric direct mechanism as $((x_{HH}, y_{HH}), (x_{HL}, y_{HL}), (x_{LH}, y_{LH}), (x_{LL}, y_{LL}))$.
 - $x_{tt'}$: probability of type t getting the object if announced type profile is $(v_t, v_{t'})$, where t, t' = H, L.
 - $y_{tt'}$: payment to the seller by type t if announced type profile is $(v_t, v_{t'})$, where t, t' = H, L.
- Objective: maximize $2(p_H(p_Hy_{HH}+p_Ly_{HL})+p_L(p_Hy_{LH}+p_Ly_{LL}))$.

- Constraints:
 - Feasibility: $2x_{HH} \leq 1, 2x_{LL} \leq 1, x_{HL} + x_{LH} \leq 1$.
 - Individual rationality IR_t for each type v_t , where t = H, L:

$$p_H(v_t x_{tH} - y_{TH}) + p_L(v_t x_{tL} - y_{tL}) \ge 0.$$

- Incentive compatibility IC_t for each type $v_t, t' \neq t = H, L$:

$$p_H(v_t x_{tH} - y_{TH}) + p_L(v_t x_{tL} - y_{tL})$$

$$\geq p_H(v_t x_{t'H} - y_{t'H}) + p_L(v_t x_{t'L} - y_{t'L}).$$

- Rewrite optimal auction problem.
 - Define $X_t = p_H x_{tH} + p_L x_{tL}$, and $Y_t = p_H y_{tH} + p_L y_{tL}$ for each t = H, L.
 - Mechanism: $((X_t, Y_t), (X_t, Y_t)).$
 - Objective: $2(p_H Y_H + p_L Y_L)$.
 - Feasibility constraints: $X_H \leq \frac{1}{2}p_H + p_L; X_L \leq p_H + \frac{1}{2}p_L;$ $p_H X_H + p_L X_L \leq \frac{1}{2}.$
 - $\operatorname{IR}_t: v_t X_t Y_t \ge 0 \text{ for each } t = H, L.$
 - $\operatorname{IC}_t: v_t X_t Y_t \ge v_t X_{t'} Y_{t'} \text{ for each } t \neq t' = H, L.$

- Constraints analysis
 - IR_L and IC_H imply IR_H .
 - IR_L binds at optimum.
 - IC_H binds at optimum.
 - IC_H and IC_L imply $X_H \ge X_L$.
 - $-X_H \ge X_L$ and binding IC_H imply IC_L.

• Rewrite optimization problem.

- IR_L binds:
$$Y_L = v_L X_L$$
.

- IC_H binds:
$$Y_H = Y_L + v_H(X_H - X_L) = v_L X_L + v_H(X_H - X_L).$$

- Choice variables are X_H and X_L .

- Objective is

$$2(p_H(v_L X_L + v_H(X_H - X_L)) + p_L v_L X_L)$$

=2(v_H p_H X_H + (v_L - p_H v_H) X_L).

- Only constraints are feasibility.

Solution: optimal auction.

• Case (i): $v_L > p_H v_H$.

- Maximizing
$$X_H$$
 gives $X_H = \frac{1}{2}p_H + p_L$ and $X_L = \frac{1}{2}p_L$.

- Revenue under optimal auction: $p_H v_H + p_L v_L$.

• Case (ii): $v_L \leq p_H v_H$.

$$-X_L = 0$$
 (type v_L is excluded) and $X_H = \frac{1}{2}p_H + p_L$.

- Revenue under optimal auction: $(1 - p_L^2)v_H$.