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Lecture 8. Auctions and Mechanism Design

1. Auctions

• Auction is a commonly used way of allocating indivisible goods

among interested buyers.

– Used cameras, Salvator Mundi, and spectrum auctions.

– Online platforms (Amazon, eBay) have increased popularity

of auctions in the modern digital economy.
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Classification of auctions.

• Open outcry versus sealed bid.

– Best known open outcry: English, Dutch auctions.

• First-price versus second-price.

– In sealed bid auctions, highest bidder wins but price depends

on rule.

• Private value versus common value.

– Distinction in auction environment rather than rules.
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1.1. Private value auctions

• Second price, sealed bid auctions with private values.

– Each bidder i, i = 1, . . . , N , values an object for sale at

vi; each i knows own valuation vi, but not any other vj,

j 6= i; each i submits a bid bi independently; bidder i wins

the auction if bi is higher than all other bj, j 6= i, wins with

equal probability if bi is among the highest, and otherwise

loses; payoff to each i is vi−p if i wins, where p is the highest

losing bid, and 0 otherwise.
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• This is a complex Bayesian game.

– To set it up, we will need to specify what each bidder i knows

about how each vj, j 6= i, is distributed.

– Type of each bidder i is own valuation vi.

– A bidding strategy of each i specifies bid bi depending on vi.

• Regardless how we specify the Bayesian game, there is a weakly

dominant strategy for each i: bidding bi = vi weakly dominates

all other bids.
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• Bidding one’s own valuation is a weakly dominant strategy.

– Fix any bidder i, and fix any valuation vi.

– Denote as b the highest outstanding bid; this is the price i

pays if i wins the auction.

– Bidding bi > vi is weakly dominated by bi = vi: they give

the same payoff when b < vi, when b = vi, and when b > bi,

but bi > vi is strictly worse than bi = vi when vi < b ≤ bi.

– Bidding bi < vi is weakly dominated by bi = vi.
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• First price, sealed bid auctions with private values.

– Each bidder i, i = 1, . . . , N , values an object for sale at

vi; each i knows own valuation vi, but not any other vj,

j 6= i; each i submits a bid bi independently; bidder i wins

the auction if bi is higher than all other bj, j 6= i, wins with

equal probability if bi is among the highest, and otherwise

loses; payoff to each i is vi − bi if i wins.
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• There is no weakly dominant bidding strategy.

– Bidding one’s own valuation is weakly dominated by bidding

below it; so is bidding above it.

• Equilibrium bidding strategy involves shading the bid, i.e., bidding

below one’s own valuation.

– To analyze how much one should shade the bid, we need to

specify the Bayesian game in greater detail.
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• A Bayesian game.

– Suppose that N = 2.

– Each bidder i, i = 1, 2, privately and independently draws

valuation vi from uniform distribution over interval [0, 1].

– Two properties of uniform distribution: the probability that

vi lies on any subinterval from [0, 1] is given by the length of

the interval; and the average is given by the mid point of the

subinterval.
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• A Bayesian Nash equilibrium: each bidder i uses bidding strategy

bi = 1
2vi.

– Fix any bidder i, and fix any valuation vi.

– Any bid bi wins when bi > bj = 1
2vj, i.e. when vj < 2bi, so bi

wins with probability 2bi, with expected payoff 2bi(vi − bi).

– The expected payoff is maximized by setting bi = 1
2vi.

9



1.2. Common values and winner’s curse

• Second price, sealed bid auctions with common values.

– Each bidder i, i = 1, 2, receives a private estimate si between

0 and 1 of the value of the object for sale; each i observes si,

and believes that sj, j 6= i, is uniform between 0 and 1; each

i’s valuation vi = si+αsj, with α a known constant between

0 and 1.

– Parameter α represents degree of common value, with α = 1

being the case of “pure” common value.
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• Winner’s curse.

– Suppose each bidder i bids expected valuation given one’s

own estimate: b(si) = si + α1
2.

– Fix i and si.

– Probability of winning is si.

– Expected valuation conditional on winning is si + α1
2si.

– Expected price paid conditional on winning is 1
2si + α1

2.

– Expected payoff conditional on winning is difference, which

is negative for si < α/(1 + α).
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• A Bayesian Nash equilibrium: b(si) = si + αsi.

– Fix i and si, and consider any bi.

– Probability of winning is bi/(1 + α).

– The expected valuation conditional on winning is given by

si + α1
2bi/(1 + α).

– Expected price paid conditional on winning is 1
2bi.

– Expected payoff, which is the probability of winning times the

difference of the expected valuation and the expected price

conditional on winning, is maximized at bi = (1 + α)si.
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2. Mechanism design

• Consider two-type, independent private value, first price auction.

• Is second price auction better than first price auction for the seller?

• Can any auction do better?

• What is the optimal auction?
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2.1. First price auction

• Bayesian game of first price auction:

– Players: Bidder 1 and Bidder 2.

– Type space is Ti = {vH, vL} for i = 1, 2, with independence:

pi(vH) = pH and pi(vL) = pL, for each i = 1, 2.

– Action space Ai = [0,∞) for each i = 1, 2: denote a typical

element as bi.

– For each i 6= j = 1, 2, payoff function ui(b1, b2; vi) of Bidder

i is vi − bi if bi > bj,
1
2(vi − bi) if bi = bj, and 0 if bi < bj.
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• Pure strategy Bayesian Nash equilibrium does not exist.

– Suppose (b∗(vH), b∗(vL)) is a symmetric BNE.

– b∗(vH) solves maxb1 pHu1(b1, b
∗(vH); vH)+pLu1(b1, b

∗(vL); vH),

and b∗(vL) solves maxb1 pHu1(b1, b
∗(vH); vL)+pLu1(b1, b

∗(vL); vL).

– b∗(vL) ≤ vL and b∗(vH) ≤ vH .

– b∗(vH) < vH .

– Profitable unilateral deviation for type vH to just above b∗(vH),

a contradiction.
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• Mixed strategies in Bayesian games are defined as in static games

of complete information: mi is a mixed strategy if mi(ti) is a

probability distribution over Ai for each ti ∈ Ti.

– Mixed strategy BNE m∗ = (m∗1, . . . ,m
∗
n) is defined in the

same way in static games of complete information.

– As in static games of complete information, in any mixed

strategy Bayesian Nash equilibrium m∗, if type ti of player

i randomizes over Ai, then he must be indifferent among all

actions that receive positive probabilities fromm∗i and weakly

prefer any such action to all other actions in Ai.
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• For present Bayesian game, we will show there is a symmetric

mixed strategy Bayesian Nash equilibrium given by:

– Type vL bids vL (pure strategy).

– Type vH randomizes according to some continuous function

F (b) on (vL, v], where v = pHvH + pLvL and F (b) denotes

the probability bid is no greater than some b.
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• For type vH to mix among (vL, v], he must be indifferent among

all b ∈ (vL, v].

– For any b ∈ (vL, v], type vH ’s expected payoff is

pL(vH − b) + pHF (b)(vH − b).

– Using b = vL we find F (b) = [pL(b− vL)]/[pH(vH − b)].

– Note F (vL) = 0 and F (v) = 1.

• Verify symmetric Bayesian Nash equilibrium.
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• Bidders’ equilibrium payoffs.

– Type vL’s payoff is 0: regardless of getting the object or not.

– Type vH ’s payoff is pL(vH−vL): maximum payoff when meet-

ing type vL, and zero payoff when meeting type vH .

• Seller’s revenue is (1− p2H)vL + p2HvH .

– Total surplus minus 2 times each bidder’s expected payoff:

p2LvL + (1− p2L)vH − 2pHpL(vH − vL).
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2.2. Other auctions

Second price auction: highest bid wins but pays the second highest bid.

• Bidding one’s own valuation is weakly dominant regardless of the

distribution of opponent’s valuation.

• In the two-type example above, seller’s expected revenue is same as

in first-price auction: p2LvL+2pLpHvL+p2HvH = (1−p2H)vL+p2HvH .

• Revenue equivalence: in both first price and second price auctions,

types vL and vH get same payoffs.
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• Consider the following game where bidders announce their type

(instead of bidding):

– If both bidders announce vL, each pays vL and gets object

with probability 1
2.

– If both bidders announce vH , each pays vH and gets object

with probability 1
2.

– If one announces vH and the other vL, the former wins and

pays 1
2(vH + vL), and the latter pays nothing.
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• Verify truth-telling is a Bayesian Nash equilibrium.

– Type vL is strictly better off reporting truthfully, rather than

lying.

– Type vH is indifferent between telling the truth and lying.

• Seller’s revenue is

p2LvL + 2pLpH
1

2
(vH + vL) + p2HvH = pHvH + pLvL.

– Greater than in first and second price auctions.
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2.3. Optimal auction design problem

An optimization problem.

• Objective is to maximize the seller’s revenue.

• Design instrument is mechanism, a Bayesian game for bidders.

– Players, types, feasible allocations, payoff functions, are given.

– Action space, assignment, payment rules are designed.

• Constraints on optimization problem

– Bidders participate voluntarily (individual rationality), and

play a BNE (incentive compatibility).
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2.4. Mechanism design

• Mechanism design problem in general.

– Players: i = 1, . . . , n.

– Ti: type space for each i, with T = T1 × . . . × Tn, and

probability function p.

– Y : set of feasible allocations.

– ui(y; t): vNM payoff function of player i.
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• Mechanism

– Ai: action space for each player.

– g: outcome mapping from A1 × . . .× An to Y .

– Stochastic mechanism: g maps action profiles to distribution

over Y .

– Direct mechanism: Ai = Ti for each i, so each i announces

his type.
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• Any mechanism, direct or indirect, defines a Bayesian game.

– Strategy si of each player i is a mapping from Ti to to Ai.

– Outcome g(s1(t1), . . . , sn(tn)) is a mapping from T to Y .

• Proposition (Revelation principle) If s∗ is BNE in a mechanism

〈(Ai), g〉, then there is a truthful BNE in the direct mechanism

〈(Ti), g(s∗)〉.

– Suffices to consider direct mechanisms.

– Suffices to consider truthful BNE in direct mechanisms.
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Proof. Since s∗ is a Bayesian Nash equilibrium in a mechanism 〈(Ai), g〉,

s∗i (ti) ∈ arg max
ai

∑
t−i

ui(g(ai, s
∗
−i(t−i)); ti, t−i)p(t−i|ti)

for each i and each ti. Then

ti ∈ arg max
t′i

∑
t−i

ui(g(s∗i (t
′
i), s

∗
−i(t−i)); ti, t−i)p(t−i|ti).

So truth-telling is a BNE in the direct mechanism 〈(Ti), g(s∗)〉. The

outcome of this truth-telling equilibrium is g(s∗), which is the same as

the outcome in the BNE s∗ in the original mechanism 〈(Ai), g〉.
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3. Optimal auction

• In the two-bidder, two-value auction problem, denote a symmetric

direct mechanism as ((xHH, yHH), (xHL, yHL), (xLH, yLH), (xLL, yLL)).

– xtt′: probability of type t getting the object if announced type

profile is (vt, vt′), where t, t′ = H,L.

– ytt′: payment to the seller by type t if announced type profile

is (vt, vt′), where t, t′ = H,L.

• Objective: maximize 2(pH(pHyHH+pLyHL)+pL(pHyLH+pLyLL)).
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• Constraints:

– Feasibility: 2xHH ≤ 1, 2xLL ≤ 1, xHL + xLH ≤ 1.

– Individual rationality IRt for each type vt, where t = H,L:

pH(vtxtH − yTH) + pL(vtxtL − ytL) ≥ 0.

– Incentive compatibility ICt for each type vt, t
′ 6= t = H,L:

pH(vtxtH − yTH) + pL(vtxtL − ytL)

≥pH(vtxt′H − yt′H) + pL(vtxt′L − yt′L).
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• Rewrite optimal auction problem.

– Define Xt = pHxtH +pLxtL, and Yt = pHytH +pLytL for each

t = H,L.

– Mechanism: ((Xt, Yt), (Xt, Yt)).

– Objective: 2(pHYH + pLYL).

– Feasibility constraints: XH ≤ 1
2pH + pL; XL ≤ pH + 1

2pL;

pHXH + pLXL ≤ 1
2.

– IRt: vtXt − Yt ≥ 0 for each t = H,L.

– ICt: vtXt − Yt ≥ vtXt′ − Yt′ for each t 6= t′ = H,L.
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• Constraints analysis

– IRL and ICH imply IRH .

– IRL binds at optimum.

– ICH binds at optimum.

– ICH and ICL imply XH ≥ XL.

– XH ≥ XL and binding ICH imply ICL.
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• Rewrite optimization problem.

– IRL binds: YL = vLXL.

– ICH binds: YH = YL+vH(XH−XL) = vLXL+vH(XH−XL).

– Choice variables are XH and XL.

– Objective is

2(pH(vLXL + vH(XH −XL)) + pLvLXL)

=2(vHpHXH + (vL − pHvH)XL).

– Only constraints are feasibility.
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Solution: optimal auction.

• Case (i): vL > pHvH .

– Maximizing XH gives XH = 1
2pH + pL and XL = 1

2pL.

– Revenue under optimal auction: pHvH + pLvL.

• Case (ii): vL ≤ pHvH .

– XL = 0 (type vL is excluded) and XH = 1
2pH + pL.

– Revenue under optimal auction: (1− p2L)vH .
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