Econ 421 Fall, 2023 Li, Hao UBC

LECTURE 6. INFINITE-HORIZON GAMES

1. Infinite horizon

Potentially infinite repeated strategic interactions among players.

- An identical or similar *stage game* is repeated, which can be a simultaneous-move game, as well as an extensive-form game.
- Histories of previous stages are all observed, allowing players to condition their play in current stage on the past.

Applications of multi-stage games include:

- Alternating-offer bargaining.
- War of attrition.
- Collusion in repeated oligopoly.

We generalize extensive-form games by allowing infinite histories.

- A terminal history may be an infinite history.
- Evaluating an infinite terminal history: for each i, any payoff u received in t periods in the future is worth $\delta_i^t u$ today, where the discount factor $\delta_i \in (0, 1)$.
- Player *i* prefers one infinite sequence of payoffs $(u_i^0, \ldots, u_i^t, \ldots)$ to another $(\tilde{u}_i^0, \ldots, \tilde{u}_i^t, \ldots)$ if and only if

$$\sum_{t=0}^{\infty} \delta_i^t u_i^t > \sum_{t=0}^{\infty} \delta_i^t \tilde{u}_i^t.$$

Example (Rubinstein's alternating-offer bargaining game). There are two players who bargain over a dollar. The game begins in period 0 with player 1 proposing a way to split the dollar. If 2 accepts, game ends with the dollar split as proposed by player 1. If 2 rejects, game proceeds to period 1 in which 2 makes a counter proposal. Game ends if player 1 accepts it, otherwise player 1 gets to make a proposal in period 2, and so on. If the game ends in period t with one player proposing $x_t \in [0,1]$ to the other player and the latter accepting it, then the former's payoff is $\delta^t(1-x_t)$ and the latter's payoff is $\delta^t x_t$, where δ is the common discount factor. If the game never ends, each player gets 0.

Formally, any history $h^t \in H$ is one of the following:

- $h^t = \emptyset$ or $h^t = (x_0, R, x_1, R, \dots, x_t, R)$ $(x_s \text{ is offer in } s \text{ and } R \text{ is}$ Reject), with $P(h^t) = 1$ if t is odd and $P(h^t) = 2$ if t is even;
- $h^t = (x_0, R, x_1, R, \dots, x_t)$, with $P(h^t) = 1$ if t is odd, $P(h^t) = 2$ if t is even;
- $h^t = (x_0, R, x_1, R, \dots, x_t, A)$ (A is Accept), with payoffs $\delta^t x_t$ to player 1 and $\delta^t (1 x_t)$ to player 2 if t is odd, and $\delta^t (1 x_t)$ to player 1 and $\delta^t x_t$ to player 2 if t is even;
- $h^t = (x_0, R, x_1, R, ...,)$, with payoff 0 to both player.

Example (Repeated Cournot duopoly). Suppose that two Cournot duopolists with the same constant marginal cost c (and no fixed cost) face an inverse demand function given by P(Q) = a - Q with a > c. Consider this Cournot duopoly game being played for an infinite number of periods. Each firm evaluates an infinite sequence of profits $(\pi_t)_{t=0}^{\infty}$ according the geometric sum $\sum_{t=0}^{\infty} \delta^t \pi_t$, where $\delta \in (0,1)$ is the common discount factor.

Formally, any $h^t \in H$ except \emptyset is a sequence of pairs of quantities from period 0 to period $t-1, ((q_1^0, q_2^0), \dots, (q_1^{t-1}, q_2^{t-1}))$, such that

- $P(h^t) = \{ \text{Firm 1, Firm 2} \};$
- set of actions for each firm is $A_1(h^t) = A_2(h^t) = [0, \infty);$
- set of terminal histories is an infinite sequence of pairs of quantities, $((q_1^0, q_2^0), \dots, (q_1^{t-1}, q_2^{t-1}), \dots), \text{ with payoff } \sum_{t=0}^{\infty} \delta^t q_j^t (a q_1^t q_2^t c)$ to Firm j, j = 1, 2.

SPE applies without change.

- With infinite terminal histories, backward induction does not work, but we have the following extension.
- **Proposition** (One-shot deviation principle). A strategy profile s^* is a subgame perfect equilibrium in a finite-horizon multi-stage game, or an infinite-horizon game with discounting, if and only if, for each player i and each subgame $\Gamma(h^t)$ with $i \in P(h^t)$, conditional on reaching h^t there is no action $a_i \in A_i(h^t)$ such that player i obtains a strictly higher payoff in $\Gamma(h^t)$ by deviating from $s_i^*(h^t)$ to a_i in period t and then reverting back to s_i^* afterwards.

Basic idea behind one-shot principle.

- In words, one-shot principle says that a strategy profile is SPE if and only if there is no player and no subgame such that the player has a strictly better strategy in the subgame that differs from the player's proposed strategy in one single move.
- The "only if" part is immediate.
- The "if" part implies that there is no need to check multi-shot deviations, and follows from Principle of Optimality that there is no profitable multi-shot deviation if there is none in one shot.

Proof. "Only if" follows from definition of SPE.

For "if," fix a strategy profile s^* . Suppose that there is no profitable one-shot deviation from s_i^* against s_{-i}^* for any i but that s^* is not a SPE. Then, there exist a player i, a subgame $\Gamma(h^t)$, and a strategy s_i such that s_i is a strictly better response than s_i^* to s_{-i}^* in $\Gamma(h^t)$. Let τ be the largest t' > t such that there is a history $h^{t'}$ following h^t with $s_i(h^{t'}) \neq s_i^*(h^{t'})$.

- (i) Suppose τ is finite. Define a new strategy $s_i^{\tau-1}$ in $\Gamma(h^t)$ that agrees with s_i from period t to $\tau-1$ and with s_i^* afterwards. Then $s_i^{\tau-1}$ is also is a strictly better response than s_i^* to s_{-i}^* in $\Gamma(h^t)$. The same is true if we define $s_i^{\tau-2}$ that agrees with s_i up to period $\tau-2$ and with s_i^* afterwards. A contradiction eventually.
- (ii) Suppose τ is infinite. Due to discounting, there is $\tilde{\tau}$ sufficiently large, such that the strategy \tilde{s}_i in $\Gamma(h^t)$ given by s_i up to period $\tilde{\tau}$ and by s_i^* afterwards is also a strictly better response than s_i^* to s_{-i}^* in $\Gamma(h^t)$. Apply (i).

2. Alternating-offer bargaining

Construct SPE that is stationary (equilibrium offer is constant regardless of who makes the offer when) and efficient (equilibrium offer is accepted with probability one).

• Equilibrium offer satisfies

$$x_* = \delta(1 - x_*),$$

which gives

$$x_* = \frac{\delta}{1+\delta}.$$

- Equilibrium is then given by: always offer x_* as proposer, and accept any offer $x \ge x_*$ and reject all $x < x_*$.
- Verify the equilibrium by one-shot deviation principle.
 - Proposer strictly prefers having x_* accepted to accepting x_* in next period.
 - Responder is indifferent between accepting x_* and rejecting it and having x_* accepted in next period.

Equilibrium properties.

- Efficiency: there is no delay in equilibrium.
- First-mover advantage: player 1's equilibrium payoff is greater than player 2's equilibrium payoff.
 - Advantage arises from the delay in making a counter offer.
 - It disappears when δ goes to 1.

3. Repeated prisoner's dilemma

Consider a repeated Prisoner's Dilemma game, with common discount factor $\delta \in (0,1)$ and stage game given by

$$\begin{array}{c|cc}
D & C \\
\hline
D & 1, 1 & 3, 0 \\
C & 0, 3 & 2, 2
\end{array}$$

Finitely repeated.

- Backward induction implies a unique SPE.
- In the equilibrium, the outcome is (D, D) in each period.
- There is no possibility to support the Pareto efficient outcome (C,C) in a subgame perfect equilibrium, even though repeated plays allow players to condition their players in the current on the history of the past players.

Infinitely repeated.

- The Pareto efficient stage outcome (C, C) can be sustained in every period in a SPE if players are sufficiently patient.
- Consider $trigger\ strategy$: start with C; continue with it so long as the last period's outcome is (C,C); otherwise permanently switch to D regardless of history.

- Use one-shot principle to verify equilibrium.
 - In any subgame at $h^t \neq \{(C, C), \dots, (C, C)\}$, there is no profitable one-shot deviation from D.
 - In any subgame at $h^t = \{(C, C), \dots, (C, C)\}$, there is no profitable one-shot deviation from C if

$$2 + \delta \cdot 2 + \delta^2 \cdot 2 + \ldots \ge 3 + \delta \cdot 1 + \delta^2 \cdot 1 + \ldots,$$

which is equivalent to $\delta \geq \frac{1}{2}$.

• Generalized Prisoner's Dilemma, with d > l and h > c > d:

$$egin{array}{c|c} D & C \\ \hline D & d,d & h,l \\ \hline C & l,h & c,c \\ \hline \end{array}$$

- To support (C, C) as equilibrium outcome, we need

$$c + \delta \cdot c + \delta^2 \cdot c + \ldots \ge h + \delta \cdot d + \delta^2 \cdot d + \ldots,$$

which is equivalent to $(c-d)\delta/(1-\delta) \ge h-c$.

- Present value of future losses is greater than the one time gain from deviation.

- Tit-for-tat.
 - Consider the following: start with C; in every subsequent period, play the action chosen by the opponent.
 - Use one-deviation principle to show that a pair of tit-for-tat strategies is not a subgame perfect equilibrium except for a single value of δ .
 - The legend of tit-for-tat, and an explanation.

4. Repeated Cournot duopoly

Benchmarks.

- The collusive outcome is each firm producing $\frac{1}{4}(a-c)$, with profit $\frac{1}{8}(a-c)^2$.
- The unique NE outcome in the stage game is each firm producing $\frac{1}{3}(a-c)$, with profit $\frac{1}{9}(a-c)^2$.

Nash-trigger strategies.

- There is a critical value of $\hat{\delta}$, such that for all $\delta \geq \hat{\delta}$, there is SPE that supports collusive outcome, using a strategy that triggers a permanent switch to NE after any deviation from collusion.
- For $\delta < \hat{\delta}$, Nash-trigger strategy cannot support collusion, but can support an outcome more profitable than NE.
- Can firms do even better than most profitable outcome supported by Nash-trigger strategy when $\delta < \hat{\delta}$?

Answer is yes, but need to a find a strategy that is more punishing than permanent switch to NE and is yet credible.

- Consider carrot-and-stick strategy: for some large fraction x to be specified, play the collusive quantity $\frac{1}{4}(a-c)$ if last period outcome is either collusive quantity pair $(\frac{1}{4}(a-c), \frac{1}{4}(a-c))$, or (x(a-c), x(a-c)); otherwise, play x(a-c).
- Carrot is collusive quantity $\frac{1}{4}(a-c)$; stick is punishment quantity x(a-c), which lasts just one period and is supported by restarting.

- \bullet Find necessary and sufficient conditions on x using the one-shot deviation principle.
 - For all subgames at the beginning of period t, after either $\left(\frac{1}{4}(a-c), \frac{1}{4}(a-c)\right)$ or (x(a-c), x(a-c)) in previous period,

$$\frac{1}{8(1-\delta)} \ge \frac{9}{64} + \delta x(1-2x) + \frac{\delta^2}{8(1-\delta)},$$

which is equivalent to

$$\delta(4x-1)^2 \ge \frac{1}{8}.$$

- For all other subgames at the beginning of period t,

$$x(1-2x) + \frac{\delta}{8(1-\delta)} \ge \frac{(1-x)^2}{4} + \delta x(1-2x) + \frac{\delta^2}{8(1-\delta)},$$

which is equivalent to

$$\delta(4x-1)^2 \ge 2(3x-1)^2.$$

- As long as $\delta \geq \frac{9}{32}$, there exists x that satisfies both inequalities.
 - Collusion can be supported by carrot-and-stick strategy as SPE outcome, so long as $\delta \geq \frac{9}{32}$.
 - This cutoff value of δ is lower than $\hat{\delta}$, the lowest discount factor that allows collusion to be supported by Nash-trigger strategy as SPE outcome.
- For $\delta < \frac{9}{32}$, carrot-and-stick strategy cannot support collusion, but can support an outcome more profitable than NE.