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Lecture 5. Applications of SPE

1. The ultimatum game

• The ultimatum game is the simplest bargaining game.

• We have analyzed the discrete version of the game.
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Player 1 offers an amount x ∈ [0, 1] to player 2, who can either accept

or reject it (A or R). If accepted, 2 gets x and 1 gets 1− x. If rejected,

both get 0.

• Each offer x starts a smallest subgame.

• Player 2’s best response is A if x > 0, and {A,R} if x = 0.
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• There are two possible SPE strategies for 2: choose A for all x ∈

[0, 1], or choose A for all x ∈ (0, 1] and R for x = 0.

• In the first case, 1’s best response is to choose x = 0, and in the

second case, 1 has no best response.

• A unique SPE: x = 0 and A for all x ∈ [0, 1].

• The outcome is that player 1 offers 0 and player 2 accepts it; there

are many NE that are not SPE.
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2. Stackelberg duopoly

Consider the following duopoly quantity competition (called Stackelberg

duopoly).

• First Firm 1 produces a quantity q1 ≥ 0, at a constant marginal

cost c.

• After observing Firm 1’s choice, Firm 2 chooses q2 ≥ 0, at the

same c.

• Market-clearing price is given by a − Q, with Q = q1 + q2 and

a > c.
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Firm 1 is the market leader, and 2 is the follower.

• How does the outcome differ from the Nash equilibrium outcome

in Cournot duopoly?

• Does Firm 1 necessarily have a first-mover advantage?

• Do the conclusions depend on the assumption of linear demand

function?
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Find SPE using backward induction.

• Each choice q1 by Firm 1 corresponds to a smallest subgame.

• Firm 2’s best response is b2(q1) = 1
2(a− c− q1) if q1 ≤ a− c, and

0 otherwise, which is the same as in Cournot duopoly.

• Firm 1 chooses q1 to maximize q1(a− q1 − b2(q1)− c): assuming

q1 ≤ a−c and hence b2(q1) = 1
2(a−c−q1), we have q1 = 1

2(a−c),

which is indeed smaller than a− c.

• Unique SPE:
(
1
2(a− c), b2(q1)

)
, with outcome q1 = 1

2(a − c) and

q2 = 1
4(a− c).
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Comparing SPE in Stackelberg duopoly and NE in Cournot duopoly.

• SPE quantiteis in Stackelberg duopoly:
(
1
2(a− c),

1
4(a− c)

)
vs

NE quantities in Cournot duopoly:
(
1
3(a− c),

1
3(a− c)

)
.

• Firm 1 produces more and makes a greater profit as the Stackelberg

leader than as a Cournot duopolist.

• Firm 2 produces less and makes a smaller profit as the Stackelberg

follower than as a Cournot duopolist.
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First-mover advantage of Stackelberg leader holds generally.

• Leader cannot do worse than in Cournot duopoly.

• Leader can do strictly better: by increasing marginally quantity

from its Nash equilibrium quantity, Leader gets a strictly greater

profit than in Nash equilibrium.

• Stackelberg leader produces more than follower, so long as best

response of follower is downward sloping.
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Understanding first-mover advantage in Stackelberg duopoly.

• What’s important is making quantity commitment known to the

opponent, not the timing of move per se.

• Commitment power is necessary to realize first-mover advantage,

because leader’s equilibrium quantity is not a best response to

follower’s equilibrium quantity.
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Source of first-mover advantage in Stackelberg duopoly.

• Ex ante commitment to action is not beneficial for a decision maker

playing against nature.

• Commitment to price has no value in Bertrand duopoly.

• In Cournot duopoly, commitment to quantity yields a first-mover

advantage, because appropriate commitment leads to change in

opponent’s quantity that’s beneficial to the firm that makes the

commitment.
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3. Exiting a declining industry

• At beginning of each period t = 0, 1, . . ., two identical firms, A

and B, simultaneously decide whether to exit or stay.

• If a firm exits in period t, its payoff from period t onward is 0; if

it is the only one that stays in t, its payoff is µt from period t; if

both firms stay in t, each gets δt; for each terminal history, each

firm’s payoff is the sum of the payoffs over all periods.

• Declining industry: both µt and δt are decreasing in t, satisfying

t1 = max{t : µt ≥ 0} > t2 = max{t : δt ≥ 0}, and δt1−1+µt1 > 0.
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Extensive form.

• Players are A and B.

• A non-terminal history ht at the beginning of period t is sequence

of action profiles ((a0, b0), . . . , (at−1, bt−1)), such that: (i) at least

one of at−1 and bt−1 is Stay ; (ii) if as = Exit for s = 0, . . . , t− 2,

then as′ = Exit for all s′ = s + 1, . . . , t − 1, and the same holds

for firm B.

• A terminal history ηt at the end of period t is (ht, (at, bt)), where

ht is a non-terminal history, and at = bt = Exit.
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• Player function P assigns each non-terminal history ht to A and

B if at−1 = bt−1 = Stay, to A if at−1 = Stay and bt−1 = Exit, and

to B if bt−1 = Stay and at−1 = Exit, with the same set of actions

A(ht) = {Stay, Exit}.

• For each terminal history ηt, A’s payoff is sum of the payoffs over

all periods s = 0, . . . , t, where the payoff from period s equals δs if

as = bs = Exit, equals µs if as = Stay and bs = Exit, and equals

0 if as = Exit, and analogously for B.
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Backward induction.

• We can start backward induction at beginning of period t1, because

firms will exit in t1 + 1 even if they are the only one in period t.

• If A or B is the only one left, it should choose Stay, followed by

exiting in t1 + 1 and onward.

• If both are still in, there are three Nash equilibria in the subgame:

at1 = Stay and bt1 = Exit, at1 = Exit and bt1 = Stay, and each

choosing Exit with probability −δt1/(µt1 − δt1), all followed by

exiting in t1 + 1 and onward.
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Take at1 = Stay and bt1 = Exit in period t1.

• Go backward to the beginning of period t1−1, assuming t1−1 > t2

so that δt1−1 < 0 < µt1−1.

– If A or B is the only one left, it should choose Stay, followed

by strategies specified in backward induction.

– If both are still in, since δt1−1 + µt1 > 0 by assumption,

there is a unique Nash equilibrium with at1−1 = Stay and

bt1−1 = Exit, followed by strategies specified in backward

induction.
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• Go backward to the beginning of period t1−2, assuming t1−2 > t2

so that δt1−2 < 0 < µt1−2.

– If A or B is the only one left, it should choose Stay, followed

by strategies specified in backward induction.

– If both are still in, since δt1−2 +µt1−1 +µt1 > δt1−1 +µt1 > 0,

there is a unique Nash equilibrium with at1−2 = Stay and

bt1−2 = Exit, followed by strategies specified in backward

induction.
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• Backward induction continues until beginning of period t2.

– If A or B is the only one left, it should choose Stay, followed

by strategies specified in backward induction.

– If both are still in, assuming δt2 > 0, there is a unique Nash

equilibrium with at2 = bt2 = Stay, followed by strategies

specified in backward induction.
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• We have completed backward induction.

– The subgame perfect equilibrium is given by: for A, regardless

of whether or when B has exited, choose Stay for periods from

0 through to t1 and Exit from period t1 + 1 onwards; for B,

choose Stay for periods from 0 through to t2 regardless of

whether or when A has exited, choose Stay if A has already

exited and Exit otherwise for periods from t2 + 1 through to

t1, choose Exit regardless of whether or when A has exited

from period t1 + 1 onwards.
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Now we take each choosing Exit with probability −δt1/(µt1 − δt1).

• Go backward to the beginning of period t1−1, assuming t1−1 > t2

so that δt1−1 < 0 < µt1−1.

– If A or B is the only one left, it should choose Stay, followed

by strategies specified in backward induction.

– If both are left, there are three Nash equilibria, at1−1 = Stay

and bt1−1 = Exit, at1−1 = Exit and bt1−1 = Stay, and each

choosing Exit with probability−δt1−1/(µt1−1+µt1−δt1−1), all

followed by strategies already specified in backward induction.
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• If we select either pure-strategy Nash equilibrium in t1 − 1, we

can go backwards in the same way as in previous case, and so

let’s select the mixed-strategy Nash equilibrium, and go backward

to the beginning of period t1 − 2, assuming t1 − 2 > t2 so that

δt1−2 < 0 < µt1−2.

– If both are still in, there are again three Nash equilibria,

and we can continue to select mixed-strategy Nash equilib-

rium, with each firm choosing Exit with a probability equal

to −δt1−2/(µt1−2 +µt1−1 +µt1− δt1−2), followed by strategies

already specified in backward induction.
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• We have completed backward induction.

– The symmetric subgame perfect equilibrium is given by: for

periods from 0 through to t2 choose Stay regardless of whether

or when the other firm has exited; for each period s from t2+1

through to t1, choose Stay if the other firm has already ex-

ited and otherwise choose Exit with a probability equal to

−δs/(
∑t1

s′=s µs′ − δs); from periods t1 + 1 onwards, choose

Exit regardless of whether the other firm has exited.
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