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Lecture 3. Mixed-strategy Nash Equilibrium

1. Randomization in games

Recall Matching Pennies has no NE.

Child 1

Child 2

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1
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• In order not to lose this game, players must be unpredictable, by

randomizing over actions.

– Randomization is intentional.

– Randomization makes outcome uncertain.

• Allowing for randomization requires us to specify preferences over

uncertain outcomes.
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2. Expected payoff

Choices by players when facing uncertainty.

• We model uncertain outcomes as lotteries with known odds over

certain outcomes.

• Our objective is to specify preferences over lotteries, so as to define

rational choice under uncertainty.
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Fix a finite number k of possible outcomes, denoted by o1, . . . , ok.

• A lottery is a vector L = (p1, . . . , pk) such that pj ≥ 0 for each j

and
∑k

j=1 pj = 1, with each pj representing the probability that

the outcome oj occurs in the lottery L.

• Each certain outcome is a degenerate lottery: o1 is (1, 0, . . . , 0),

..., and ok is (0, . . . , 0, 1).

Example: in Matching Pennies, there are 4 certain outcomes, and a

lottery specifies 4 non-negative numbers that sum up to 1.
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A representation U of a player’s preferences over all lotteries is called

an expected-payoff representation if there is a payoff function u from

{o1, . . . , ok} to R such that for each lottery L = (p1, . . . , pk),

U (L) =
k

∑

j=1

pju(oj).

• Representation means that the player prefers L1 to L2 if and only

if U (L1) > U (L2).

• Expected-payoff representation extends the payoff function u over

certain outcomes to payoff function U over uncertain outcomes.
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Under expected payoff representation, rational choice under uncertainty

is maximizing expected payoff.

• u is called a von Neumann-Morgenstern (vNM) payoff function.

•
∑k

j=1 pju(oj) is the expected value of the function u under the

lottery L = (p1, . . . , pk).

Example: in Matching Pennies game, using payoff function u is given in

the matrix, we can compute and evaluate any random outcome.
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Expected payoff representation combines linearity and multiplicative

separability.

• Not unique: if u(·) is the vNM payoff function representing some

preferences, then v(·) = au(·) + b for any a > 0 represents the

same preferences.

• More than ordinal: if u(·) is the vNM payoff function representing

some preferences, then v(·) = f(u(·)) for an increasing function f

does not generally represent the same preferences.
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3. Mixed strategies

• A mixed strategy for i is a probability distribution over Si.

– If Si is finite, then a mixed strategymi assigns a non-negative

probability mi(si) to each strategy si in Si, such that

∑

si∈Si

mi(si) = 1.

– A pure strategy si ∈ Si of player i is just mi such that

mi(si) = 1.

– Implementation of mixed strategies.
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• Write Ui(m) for player i’s expected payoff when the strategy profile

is m = (m1, . . . , mN).

– Randomizations by players are assumed to be independent of

each other.

– Under independence the probability of outcome s = (s1, . . . , sN)

is m1(s1)× . . .×mN(sN), or simply
∏N

j=1mj(sj).

– Expected payoff Ui(m) =
∑

s

∏N
j=1mj(sj)ui(s).

• Example: expected payoffs in Matching Pennies.
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• A useful way of rewriting:

Ui(m) =
∑

si∈Si

mi(si)Ui(si, m−i),

where

Ui(si,m−i) =
∑

s−i

∏

j 6=i

mj(sj)ui(si, s−i)

is i’s expected payoff when i uses pure strategy si and others mix

according to profile m−i.

• Example: Matching Pennies.

10



4. Mixed-strategy Nash equilibrium

Nash equilibrium in mixed strategies.

• Nash equilibrium is defined in the same way as before except with

expected payoffs instead of just payoffs: m∗ is a Nash equilibrium

if U (m∗
i ,m

∗
−i) ≥ U (mi, m

∗
−i) for all i and all mixed strategy of i.

• The above definition covers Nash equilibria in pure strategies.
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Proposition (Mixed-strategy Nash equilibrium). If m∗ is a NE and

m∗
i (si) > 0 then Ui(si,m

∗
−i) ≥ Ui(s

′
i,m

∗
−i) for all s

′
i ∈ Si.

• Proof. Follows from linearity of Ui in m∗
i (si) and independence of

m∗
i and m∗

−i.
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• Implication: Ifm∗ is a NE, thenm∗
i (si) > 0 andm∗

i (s
′
i) > 0 imply

Ui(si, m
∗
−i) = Ui(s

′
i, m

∗
−i).

– Player i must be indifferent between si and s′i in order to mix

between them in a Nash equilibrium.

– A mixed-strategy Nash equilibrium is not strict.

– In applications, above implication imposes a restriction on

m∗
−i in order for i to mix between si and s′i, and can be used

to find mixed-strategy Nash equilibrium.
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Example (Matching Pennies). We can find NE by intersection of best

response functions.

• The best response of 1, in terms of the probability p of playing H ,

to the probability q that 2 chooses H , is p = 0 if q < 1
2; p = 1 if

q > 1
2; and p ∈ [0, 1] if q = 1

2.

• The best response of 2, in terms of the probability q of playing H ,

to the probability p that 1 chooses H , is q = 1 if p < 1
2; q = 0 if

p > 1
2; and q ∈ [0, 1] if p = 1

2.

• There is a unique intersection at p = q = 1
2.
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B1(q)

B2(p)

0 1
2

1

1
2

1

p

q

Mixed-strategy Nash equilibrium in Matching Pennies.
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We can also find the unique NE by indifference.

• For 1 to mix between H and T , player 2 must choose q to make 1

indifferent between H and T , which gives q = 1
2.

• Symmetrically, for 2 to mixed between H and T , player 1 must

choose p to make 2 indifferent between H and T , which gives

p = 1
2.
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Example (Battle of Sexes).

Husband

Wife

Opera Boxing

Opera 1, 2 0, 0

Boxing 0, 0 2, 1
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Find all NE by intersection of best response function.

• The best response of Husband, in terms of the probability p of

playing B, to the probability q that Wife chooses O, is p = 1 if

q < 2
3; p = 0 if q > 2

3; and p ∈ [0, 1] if q = 2
3.

• The best response of Wife, in terms of the probability q of playing

O, to the probability p that 1 chooses B, is q = 1 if p < 2
3; q = 0

if p > 2
3; and q ∈ [0, 1] if p = 2

3.

• There are three intersections, (1, 0), (0, 1) and
(

2
3,

2
3

)

.
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B1(q)

B2(p)

p

q

0 2
3

1

2
3

1

Mixed-strategy Nash equilibria in Battle of Sexes.
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We can also find the mixed-strategy NE by indifference.

• For Husband to mix between B and O, Wife must randomize to

make Husband indifferent, which gives q = 2
3.

• For Wife to mix between B and O, Husband must randomize to

make Wife indifferent, which gives p = 2
3.
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Example (Reporting a Crime). Consider n citizens, all witnesses to a

crime, who independently choose whether or not to call the police. Each

gets payoff of 0 if nobody calls, v > 0 if some other citizen or citizens

call, and v − c > 0 if he calls (regardless of whether others also call).

• The pure strategy Nash equilibria are the profiles in which there

is exactly one caller.

– These equilibria are reasonable predictions only if players

know which one to play.
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• There is a symmetric NE in mixed strategies.

– By the indifference condition, the equilibrium probability p

that each citizen calls satisfies v − c = v
(

1− (1− p)n−1
)

,

which gives p = 1− (c/v)1/(n−1).

– As n grows, p falls, and in fact the probability no one calls

rises as n increases.

– This is another example of under-provision of public good.
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5. Comparative statics

In a mixed-strategy Nash equilibrium, there is no strict incentive for any

player to use a particular mix.

• The equilibrium mix of a player is determined to make opponents

indifferent so as to be willing to mix.

• Comparative statics of mixed-strategy of Nash equilibrium can be

counter-intuitive for this reason.
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Example (Penalty Kicks). A penalty kicker and a goalkeeper play the

following zero-sum game: a smaller αmeans an improvement in Keeper’s

skill in reducing Kicker’s advantage.

Kicker

Keeper

Left Right

Left 1, 0 α, 1− α

Right 0, 1 1, 0
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Mixed-strategy Nash equilibrium depends on α, and can be found by

using indifference.

• To make Kicker indifferent, Keeper chooses Left with q such that

q ·1+(1−q) ·α = q ·0+(1−q) ·1, which gives q = (1−α)/(2−α).

• To make Keeper indifferent, Kicker chooses Left with p such that

p ·0+(1−p) ·1 = p ·(1−α)+(1−p) ·0, which gives p = 1/(2−α).

• When α decreases, Keeper gets better with Right but achieves a

higher payoff by using Right less often.
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