Econ 421
Fall, 2023
Li, Hao
UBC

Lecture 3. Mixed-strategy Nash Equilibrium

1. Randomization in games

Recall Matching Pennies has no NE.

Child 2

\[

\]

- In order not to lose this game, players must be unpredictable, by randomizing over actions.
- Randomization is intentional.
- Randomization makes outcome uncertain.
- Allowing for randomization requires us to specify preferences over uncertain outcomes.

2. Expected payoff

Choices by players when facing uncertainty.

- We model uncertain outcomes as lotteries with known odds over certain outcomes.
- Our objective is to specify preferences over lotteries, so as to define rational choice under uncertainty.

Fix a finite number k of possible outcomes, denoted by o_{1}, \ldots, o_{k}.

- A lottery is a vector $L=\left(p_{1}, \ldots, p_{k}\right)$ such that $p_{j} \geq 0$ for each j and $\sum_{j=1}^{k} p_{j}=1$, with each p_{j} representing the probability that the outcome o_{j} occurs in the lottery L.
- Each certain outcome is a degenerate lottery: o_{1} is $(1,0, \ldots, 0)$, \ldots, and o_{k} is $(0, \ldots, 0,1)$.

Example: in Matching Pennies, there are 4 certain outcomes, and a lottery specifies 4 non-negative numbers that sum up to 1 .

A representation U of a player's preferences over all lotteries is called an expected-payoff representation if there is a payoff function u from $\left\{o_{1}, \ldots, o_{k}\right\}$ to \mathbb{R} such that for each lottery $L=\left(p_{1}, \ldots, p_{k}\right)$,

$$
U(L)=\sum_{j=1}^{k} p_{j} u\left(o_{j}\right) .
$$

- Representation means that the player prefers L_{1} to L_{2} if and only if $U\left(L_{1}\right)>U\left(L_{2}\right)$.
- Expected-payoff representation extends the payoff function u over certain outcomes to payoff function U over uncertain outcomes.

Under expected payoff representation, rational choice under uncertainty is maximizing expected payoff.

- u is called a von Neumann-Morgenstern (vNM) payoff function.
- $\sum_{j=1}^{k} p_{j} u\left(o_{j}\right)$ is the expected value of the function u under the lottery $L=\left(p_{1}, \ldots, p_{k}\right)$.

Example: in Matching Pennies game, using payoff function u is given in the matrix, we can compute and evaluate any random outcome.

Expected payoff representation combines linearity and multiplicative separability.

- Not unique: if $u(\cdot)$ is the vNM payoff function representing some preferences, then $v(\cdot)=a u(\cdot)+b$ for any $a>0$ represents the same preferences.
- More than ordinal: if $u(\cdot)$ is the vNM payoff function representing some preferences, then $v(\cdot)=f(u(\cdot))$ for an increasing function f does not generally represent the same preferences.

3. Mixed strategies

- A mixed strategy for i is a probability distribution over S_{i}.
- If S_{i} is finite, then a mixed strategy m_{i} assigns a non-negative probability $m_{i}\left(s_{i}\right)$ to each strategy s_{i} in S_{i}, such that

$$
\sum_{s_{i} \in S_{i}} m_{i}\left(s_{i}\right)=1
$$

- A pure strategy $s_{i} \in S_{i}$ of player i is just m_{i} such that $m_{i}\left(s_{i}\right)=1$.
- Implementation of mixed strategies.
- Write $U_{i}(m)$ for player i 's expected payoff when the strategy profile is $m=\left(m_{1}, \ldots, m_{N}\right)$.
- Randomizations by players are assumed to be independent of each other.
- Under independence the probability of outcome $s=\left(s_{1}, \ldots, s_{N}\right)$ is $m_{1}\left(s_{1}\right) \times \ldots \times m_{N}\left(s_{N}\right)$, or simply $\prod_{j=1}^{N} m_{j}\left(s_{j}\right)$.
- Expected payoff $U_{i}(m)=\sum_{s} \prod_{j=1}^{N} m_{j}\left(s_{j}\right) u_{i}(s)$.
- Example: expected payoffs in Matching Pennies.
- A useful way of rewriting:

$$
U_{i}(m)=\sum_{s_{i} \in S_{i}} m_{i}\left(s_{i}\right) U_{i}\left(s_{i}, m_{-i}\right),
$$

where

$$
U_{i}\left(s_{i}, m_{-i}\right)=\sum_{s_{-i}} \prod_{j \neq i} m_{j}\left(s_{j}\right) u_{i}\left(s_{i}, s_{-i}\right)
$$

is i 's expected payoff when i uses pure strategy s_{i} and others mix according to profile m_{-i}.

- Example: Matching Pennies.

4. Mixed-strategy Nash equilibrium

Nash equilibrium in mixed strategies.

- Nash equilibrium is defined in the same way as before except with expected payoffs instead of just payoffs: m^{*} is a Nash equilibrium if $U\left(m_{i}^{*}, m_{-i}^{*}\right) \geq U\left(m_{i}, m_{-i}^{*}\right)$ for all i and all mixed strategy of i.
- The above definition covers Nash equilibria in pure strategies.

Proposition (Mixed-strategy Nash equilibrium). If m^{*} is a NE and $m_{i}^{*}\left(s_{i}\right)>0$ then $U_{i}\left(s_{i}, m_{-i}^{*}\right) \geq U_{i}\left(s_{i}^{\prime}, m_{-i}^{*}\right)$ for all $s_{i}^{\prime} \in S_{i}$.

- Proof. Follows from linearity of U_{i} in $m_{i}^{*}\left(s_{i}\right)$ and independence of m_{i}^{*} and m_{-i}^{*}.
- Implication: If m^{*} is a NE, then $m_{i}^{*}\left(s_{i}\right)>0$ and $m_{i}^{*}\left(s_{i}^{\prime}\right)>0$ imply $U_{i}\left(s_{i}, m_{-i}^{*}\right)=U_{i}\left(s_{i}^{\prime}, m_{-i}^{*}\right)$.
- Player i must be indifferent between s_{i} and s_{i}^{\prime} in order to mix between them in a Nash equilibrium.
- A mixed-strategy Nash equilibrium is not strict.
- In applications, above implication imposes a restriction on m_{-i}^{*} in order for i to mix between s_{i} and s_{i}^{\prime}, and can be used to find mixed-strategy Nash equilibrium.

Example (Matching Pennies). We can find NE by intersection of best response functions.

- The best response of 1 , in terms of the probability p of playing H, to the probability q that 2 chooses H, is $p=0$ if $q<\frac{1}{2} ; p=1$ if $q>\frac{1}{2}$; and $p \in[0,1]$ if $q=\frac{1}{2}$.
- The best response of 2 , in terms of the probability q of playing H, to the probability p that 1 chooses H, is $q=1$ if $p<\frac{1}{2}$; $q=0$ if $p>\frac{1}{2} ;$ and $q \in[0,1]$ if $p=\frac{1}{2}$.
- There is a unique intersection at $p=q=\frac{1}{2}$.

Mixed-strategy Nash equilibrium in Matching Pennies.

We can also find the unique NE by indifference.

- For 1 to mix between H and T, player 2 must choose q to make 1 indifferent between H and T, which gives $q=\frac{1}{2}$.
- Symmetrically, for 2 to mixed between H and T, player 1 must choose p to make 2 indifferent between H and T, which gives $p=\frac{1}{2}$.

Example (Battle of Sexes).

Wife

Find all NE by intersection of best response function.

- The best response of Husband, in terms of the probability p of playing B, to the probability q that Wife chooses O, is $p=1$ if $q<\frac{2}{3} ; p=0$ if $q>\frac{2}{3} ;$ and $p \in[0,1]$ if $q=\frac{2}{3}$.
- The best response of Wife, in terms of the probability q of playing O, to the probability p that 1 chooses B, is $q=1$ if $p<\frac{2}{3} ; q=0$ if $p>\frac{2}{3}$; and $q \in[0,1]$ if $p=\frac{2}{3}$.
- There are three intersections, $(1,0),(0,1)$ and $\left(\frac{2}{3}, \frac{2}{3}\right)$.

Mixed-strategy Nash equilibria in Battle of Sexes.

We can also find the mixed-strategy NE by indifference.

- For Husband to mix between B and O, Wife must randomize to make Husband indifferent, which gives $q=\frac{2}{3}$.
- For Wife to mix between B and O, Husband must randomize to make Wife indifferent, which gives $p=\frac{2}{3}$.

Example (Reporting a Crime). Consider n citizens, all witnesses to a crime, who independently choose whether or not to call the police. Each gets payoff of 0 if nobody calls, $v>0$ if some other citizen or citizens call, and $v-c>0$ if he calls (regardless of whether others also call).

- The pure strategy Nash equilibria are the profiles in which there is exactly one caller.
- These equilibria are reasonable predictions only if players know which one to play.
- There is a symmetric NE in mixed strategies.
- By the indifference condition, the equilibrium probability p that each citizen calls satisfies $v-c=v\left(1-(1-p)^{n-1}\right)$, which gives $p=1-(c / v)^{1 /(n-1)}$.
- As n grows, p falls, and in fact the probability no one calls rises as n increases.
- This is another example of under-provision of public good.

5. Comparative statics

In a mixed-strategy Nash equilibrium, there is no strict incentive for any player to use a particular mix.

- The equilibrium mix of a player is determined to make opponents indifferent so as to be willing to mix.
- Comparative statics of mixed-strategy of Nash equilibrium can be counter-intuitive for this reason.

Example (Penalty Kicks). A penalty kicker and a goalkeeper play the following zero-sum game: a smaller α means an improvement in Keeper's skill in reducing Kicker's advantage.

Keeper

	Left	Right
Kicker	Left	1,0
Right	$\alpha, 1-\alpha$	
	0,1	1,0

Mixed-strategy Nash equilibrium depends on α, and can be found by using indifference.

- To make Kicker indifferent, Keeper chooses Left with q such that $q \cdot 1+(1-q) \cdot \alpha=q \cdot 0+(1-q) \cdot 1$, which gives $q=(1-\alpha) /(2-\alpha)$.
- To make Keeper indifferent, Kicker chooses Left with p such that $p \cdot 0+(1-p) \cdot 1=p \cdot(1-\alpha)+(1-p) \cdot 0$, which gives $p=1 /(2-\alpha)$.
- When α decreases, Keeper gets better with Right but achieves a higher payoff by using Right less often.

