Econ 421
Fall, 2023
Li, Hao
UBC

LECTURE 3. MIXED-STRATEGY NASH EQUILIBRIUM

1. Randomization in games

Recall Matching Pennies has no NE.

Child 2
Heads Tails

Heads | 1,—1 | —1,1
Child 1

Tails| —1,1 | 1,—1




e In order not to lose this game, players must be unpredictable, by

randomizing over actions.

— Randomization is intentional.

— Randomization makes outcome uncertain.

e Allowing for randomization requires us to specify preferences over

uncertain outcomes.



2. Expected payoff

Choices by players when facing uncertainty.

e We model uncertain outcomes as lotteries with known odds over

certain outcomes.

e Our objective is to specity preferences over lotteries, so as to define

rational choice under uncertainty.



Fix a finite number k& of possible outcomes, denoted by o1, ..., o;.

o A lottery is a vector L = (p,...,px) such that p; > 0 for each j
and Z?ﬂ p; = 1, with each p; representing the probability that

the outcome o; occurs in the lottery L.

e Each certain outcome is a degenerate lottery: o; is (1,0,...,0),

..,and og is (0,...,0,1).

Example: in Matching Pennies, there are 4 certain outcomes, and a

lottery specifies 4 non-negative numbers that sum up to 1.



A representation U of a player’s preferences over all lotteries is called
an expected-payoff representation if there is a payoff function u from

{o1,...,01} to R such that for each lottery L = (p1, ..., k),

k
U(L) =3 prulo;).

e Representation means that the player prefers Ly to Lo if and only

if U(Ly) > U(Ly).

e [ixpected-payoff representation extends the payoff function u over

certain outcomes to payoff function U over uncertain outcomes.



Under expected payoff representation, rational choice under uncertainty

is maximizing expected payoft.

e v is called a von Neumann-Morgenstern (vNM) payoff function.

o Zle pju(o;) is the expected value of the function w under the

lottery L = (p1, ..., pk).

Example: in Matching Pennies game, using payoff function u is given in

the matrix, we can compute and evaluate any random outcome.



Expected payoff representation combines linearity and multiplicative

separability.

e Not unique: if u(-) is the vINM payoff function representing some
preferences, then v(-) = au(-) + b for any a > 0 represents the

Salne preferences.

e More than ordinal: if u(+) is the vNM payoff function representing
some preferences, then v(-) = f(u(-)) for an increasing function f

does not generally represent the same preferences.



3. Mixed strategies

o A muzed strategy for ¢ is a probability distribution over .S;.

— If 5, is finite, then a mixed strategy m; assigns a non-negative

probability m;(s;) to each strategy s; in .S;, such that
Z mz'(82'> = 1.
S; ES;

— A pure strateqy s; € S; of player ¢ is just m,; such that
mz'<82'> = 1.

— Implementation of mixed strategies.



e Write U;(m) for player i’s expected payoff when the strategy profile

ism = (my,...,my).
— Randomizations by players are assumed to be independent of
cach other.

— Under independence the probability of outcome s = (s1,...,sy)

is mi(s1) X ... X my(sy), or simply Hjil m;(s;).

— Expected payoff U;(m) =), Hjil m;(s;)u(s).

e bExample: expected payofts in Matching Pennies.



e A useful way of rewriting:
= > mi(s)Ui(si,m—y),
S; €S}

where

Ui(si,m ZHmJ S;)ui(Si, S—;)

S—i JFi

is 7’s expected payoff when 7 uses pure strategy s; and others mix

according to profile m_;.

e ixample: Matching Pennies.
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4. Mixed-strategy Nash equilibrium

Nash equilibrium in mixed strategies.

e Nash equilibrium is defined in the same way as before except with
expected payofts instead of just payofts: m* is a Nash equilibrium

if U(m?,m*,) > U(m;,m* ) for all ¢ and all mixed strategy of i.

e The above definition covers Nash equilibria in pure strategies.
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Proposition (Mixed-strategy Nash equilibrium). If m* is a NE and
m;(s;) > 0 then Uj(s;,m*,) > U(si,m*,) for all s, € S;.

e Proof. Follows from linearity of U; in m}(s;) and independence of

m; and m*,
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e Implication: If m* is a NE, then m}(s;) > 0 and m}(s;) > 0 imply
Ui(si,m* ) — UZ(S;,m*_Z)

—1

— Player ¢ must be indifferent between s; and . in order to mix

between them in a Nash equilibrium.
— A mixed-strategy Nash equilibrium is not strict.

— In applications, above implication imposes a restriction on
m* . in order for ¢ to mix between s; and s;, and can be used

to find mixed-strategy Nash equilibrium.
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Example (Matching Pennies). We can find NE by intersection of best

response functions.

e The best response of 1, in terms of the probability p of playing H,
to the probability ¢ that 2 chooses H, is p =0 1if ¢ < %; p=1if

qg>iandpel0,1]if g=1.

e The best response of 2, in terms of the probability q of playing H,
to the probability p that 1 chooses H,isqg=11if p < %; qg=0if

p>3and ¢ € 0,1 if p=1.

—_

e There is a unique intersection at p = g = 3.
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| Bs(p)
. Bi(q)
2
P
0 1 1
2

Mixed-strategy Nash equilibrium in Matching Pennies.
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We can also find the unique NE by indifference.

e For 1 to mix between H and T', player 2 must choose ¢ to make 1

indifferent between H and T', which gives ¢ = %

e Symmetrically, for 2 to mixed between H and T', player 1 must

choose p to make 2 indifferent between H and 7', which gives

p:

N —

16



Example (Battle of Sexes).

Wife

Opera Boxing

Opera| 1,2 0,0
Husband

Boxing| 0,0 2,1
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Find all NE by intersection of best response function.

e The best response of Husband, in terms of the probability p of
playing B, to the probability ¢ that Wife chooses O, is p = 1 if

q<%;p:01fq>§; and p € [0, 1] ifq:%
e The best response of Wite, in terms of the probability ¢ of playing
O, to the probability p that 1 chooses B,isqg=11ifp < %; qg=10

ifp>§;andq€[0,1] ifp:%.

e There are three intersections, (1,0), (0,1) and (%, 2).
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Mixed-strategy Nash equilibria in Battle of Sexes.
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We can also find the mixed-strategy NE by indifference.

e For Husband to mix between B and O, Wife must randomize to

2

make Husband indifferent, which gives ¢ = £.

e For Wife to mix between B and O, Husband must randomize to

make Wife indifferent, which gives p = %
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Example (Reporting a Crime). Consider n citizens, all witnesses to a
crime, who independently choose whether or not to call the police. Each
gets payoft of 0 if nobody calls, v > 0 if some other citizen or citizens

call, and v — ¢ > 0 if he calls (regardless of whether others also call).

e The pure strategy Nash equilibria are the profiles in which there

is exactly one caller.

— These equilibria are reasonable predictions only if players

know which one to play.
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e There is a symmetric NE in mixed strategies.

— By the indifference condition, the equilibrium probability p

that each citizen calls satisfies v — ¢ = v (1 — (1 — p)" 1),

which gives p = 1 — (¢/v)"/ "7,

— As n grows, p falls, and in fact the probability no one calls

rises as n increases.

— This is another example of under-provision of public good.

22



5. Comparative statics

In a mixed-strategy Nash equilibrium, there is no strict incentive for any

player to use a particular mix.

e The equilibrium mix of a player is determined to make opponents

indifferent so as to be willing to mix.

e Comparative statics of mixed-strategy of Nash equilibrium can be

counter-intuitive for this reason.
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Example (Penalty Kicks). A penalty kicker and a goalkeeper play the
following zero-sum game: a smaller o means an improvement in Keeper’s

skill in reducing Kicker’s advantage.

Keeper
Left Right

Left| 1,0 |a,1—«
Kicker

Right| 0,1 1,0
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Mixed-strategy Nash equilibrium depends on «, and can be found by

using indifference.

e To make Kicker indifferent, Keeper chooses Left with ¢ such that

q-1+(1—q)-a=q-0+(1—¢q)-1, which gives g = (1—)/(2— ).

e To make Keeper indifferent, Kicker chooses Left with p such that

p-0+(1—p)-1=p-(1—a)+(1—p)-0, which givesp = 1/(2—«).

e When «a decreases, Keeper gets better with Right but achieves a

higher payoff by using Right less often.
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