Econ 421
Fall, 2023
Li, Hao
UBC

Lecture 2. Applications of Nash Equilibrium

1. Cournot oligopoly

- Oligopoly: A fixed number of producers of a homogeneous good compete strategically.
- Cournot oligopoly: quantity competition.
- Bertrand oligopoly: price competition.
- Relate Nash equilibrium to competitive equilibrium and monopoly.
- Competitive equilibrium: firms are price-taking.
- Monopoly: firms collude.
- In the same oligopoly environment, quantity competition and price competition lead to drastically different equilibrium outcomes.

A formal model of Cournot Oligopoly

- Players: N firms.
- Strategies: Each firm j chooses $q_{j} \geq 0$.
- Payoff to each firm j is its profit $\pi_{j}\left(q_{1}, \ldots, q_{N}\right)=q_{j}(P(Q)-c)$, where $Q=\sum_{j=1}^{N} q_{j}$ is the total quantity, inverse demand function $P(Q)$ is downward-sloping and continuously differentiable, and c is the constant marginal cost.
- Assume that $P(Q)>c$ for Q sufficiently small and $P(Q)<c$ for Q sufficiently large.

Find Nash equilibrium using best responses.

- The best response for firm j to q_{-j} satisfies the first-order condition
$P\left(q_{j}+Q_{-j}\right)+q_{j} P^{\prime}\left(q_{j}+Q_{-j}\right)=c$, where $Q_{-j}=\sum_{i \neq j} q_{i}$.
- Each firm j in Nash equilibrium produces the same amount q^{*}, implicitly given by the intersection of best response functions: $P\left(N q^{*}\right)-c=-q^{*} P^{\prime}\left(N q^{*}\right)$.
- Equilibrium q^{*} depends on N, denoted as $q^{*}(N)$.
- Equilibrium price is $P\left(N q^{*}(N)\right)$.

Nash equilibrium, monopoly, and competitive equilibrium.

- Since $P^{\prime}<0$, in Nash equilibrium $P\left(N q^{*}(N)\right)>c$.
- When $N=1$, Nash equilibrium coincides with monopoly.
- When $N \rightarrow \infty$, Nash equilibrium converges to the competitive equilibrium, with $P\left(N q^{*}(N)\right) \rightarrow c$ and $q^{*}(N) \rightarrow 0$.

Example (Cournot Duopoly with linear demand). Suppose $N=2$ and $P(Q)=a-Q$, where $a>c$.

- Firm 1's best response function is given by $b_{1}\left(q_{2}\right)=\frac{1}{2}\left(a-c-q_{2}\right)$ if $q_{2} \leq a-c$, and 0 otherwise; Firm 2's best response function is $b_{2}\left(q_{1}\right)=\frac{1}{2}\left(a-c-q_{1}\right)$ if $q_{1} \leq a-c$, and 0 otherwise.
- The Nash equilibrium is the intersection of the two best response functions: $q_{1}^{*}=q_{2}^{*}=\frac{1}{3}(a-c)$.
- Illustration: a unique Nash equilibrium $\left(\frac{1}{3}(a-c), \frac{1}{3}(a-c)\right)$.

2. Bertrand oligopoly

Price competition versus quantity competition, with the same demand and costs.

- In Cournot Oligopoly, firms choose quantities and then price is determined by demand.
- In Bertrand Oligopoly, firms choose price and supply the quantity demanded from their firm at that price: consumers buy only from the firm offering the lowest price.

A formal model of Bertrand Duopoly.

- Players: Firm 1 and firm 2.
- Strategies: Price $p_{j} \in[0, \infty)$ for each firm j.
- Payoffs: with c the constant marginal cost for both firms, and $Q(p)$ the total demand decreasing and continuous, satisfying $Q(c)>0$:

$$
\pi_{1}\left(p_{1}, p_{2}\right)= \begin{cases}Q\left(p_{1}\right)\left(p_{1}-c\right) & \text { if } p_{1}<p_{2} \\ \frac{1}{2} Q\left(p_{1}\right)\left(p_{1}-c\right) & \text { if } p_{1}=p_{2} \\ 0 & \text { if } p_{1}>p_{2}\end{cases}
$$

Bertrand Duopoly has a unique Nash equilibrium given by $p_{1}=p_{2}=c$.

- Verify that (c, c) is a Nash equilibrium.
- Rule out all other strategy profiles:

$$
\begin{aligned}
& -p_{i}<c \text { for } i=1 \text { or } 2 \\
& -p_{i}=c \text { and } p_{j}>c \text { for } i \neq j \\
& -p_{1}=p_{2}>c \\
& -p_{i}>c, p_{j}>c \text { but } p_{i} \neq p_{j} .
\end{aligned}
$$

For $Q(p)=a-p$, we can find the unique Nash equilibria using best response functions (where p^{m} is the monopoly price $\frac{1}{2}(a+c)$):

$$
B_{1}\left(p_{2}\right)= \begin{cases}\left(p_{2}, \infty\right) & \text { if } p_{2}<c \\ {[c, \infty)} & \text { if } p_{2}=c \\ \emptyset & \text { if } c<p_{2} \leq p^{m} \\ \left\{p^{m}\right\} & \text { if } p_{2}>p^{m}\end{cases}
$$

- Illustration: $B_{1}\left(p_{2}\right)$ and a unique Nash equilibrium (c, c).

3. The Hotelling-Downs model

- Consider two politicians competing for office.
- They simultaneously commit to policy on left-right spectrum.
- Both politicians care only about winning.
- Voters' preferred policies are uniformly distributed, with each voting for whoever offers a closer policy.
- The winner is the one with more than half of the votes.
- Related game: firms compete for customers by choosing location.

A formal model:

- Two players 1,2.
- Strategies $s_{1}, s_{2} \in[0,1]$.
- Payoffs: $u_{1}\left(s_{1}, s_{2}\right)=1, \frac{1}{2}, 0$ if 1's vote share $r\left(s_{1}, s_{2}\right)>,=,<\frac{1}{2}$, with $u_{2}\left(s_{1}, s_{2}\right)=1-u_{1}\left(s_{1}, s_{2}\right)$, and $r\left(s_{1}, s_{2}\right)$ given by

$$
r\left(s_{1}, s_{2}\right)= \begin{cases}\frac{1}{2}\left(s_{1}+s_{2}\right) & \text { if } s_{1}<s_{2} \\ \frac{1}{2} & \text { if } s_{1}=s_{2} \\ 1-\frac{1}{2}\left(s_{1}+s_{2}\right) & \text { if } s_{1}>s_{2}\end{cases}
$$

- 1 's best response to any s_{2} :

$$
B_{1}\left(s_{2}\right)= \begin{cases}\left(s_{2}, 1-s_{2}\right) & \text { if } s_{2}<\frac{1}{2} \\ \left\{\frac{1}{2}\right\} & \text { if } s_{2}=\frac{1}{2} \\ \left(1-s_{2}, s_{2}\right) & \text { if } s_{2}>\frac{1}{2}\end{cases}
$$

- $B_{2}\left(s_{1}\right)$ is symmetric.
- Illustration: $B_{1}\left(s_{2}\right)$ and a unique Nash equilibrium $\left(\frac{1}{2}, \frac{1}{2}\right)$.

4. Public goods

- A public good, such as national defence, radio broadcasts, and lighthouses, is
- non-rival, in that each person's consumption has no effect on the quantity available to others;
- non-excludable, in that it is impossible to prevent some but not all individuals from consuming the good.

A formal model of private provision of a public good.

- Players: N consumers.
- Strategies: Each i chooses $x_{i} \geq 0$ units of the public good to provide/purchase.
- Payoffs: $u_{i}\left(x_{1}+\cdots+x_{N}\right)-p x_{i}$ for each i, where $u_{i}(\cdot)$ is i 's utility from consumption of the public good, with $u^{\prime}(x)>0>u^{\prime \prime}(x)$ for all x and $u_{i}^{\prime}(0)>p>u^{\prime}(\infty)$, and $p>0$ is the private cost of the public good, is constant p per unit.

Characterizing the best response function $b_{i}\left(X_{-i}\right)$, where $X_{-i}=\sum_{j \neq i} x_{j}$.

- By definition, $b_{i}\left(X_{-i}\right)$ solves $\max _{x \geq 0} u_{i}\left(x+X_{-i}\right)-p x$, with the first order condition $u_{i}^{\prime}\left(b_{i}\left(X_{-i}\right)+X_{-i}\right)=p$ if $b_{i}\left(X_{-i}\right)>0$.
- Then,

$$
b_{i}\left(X_{-i}\right)= \begin{cases}x_{i}^{*} & \text { if } X_{-i}=0 \\ x_{i}^{*}-X_{-i} & \text { if } 0<X_{-i}<x_{i}^{*} \\ 0 & \text { if } X_{-i}>x_{i}^{*}\end{cases}
$$

where $x_{i}^{*}=b_{i}(0)>0$ is the private optimal consumption.

Assuming that $x_{1}^{*}>x_{2}^{*} \geq \ldots \geq x_{N}^{*}$, we have a unique Nash equilibrium given by $\left(x_{1}, \ldots, x_{N}\right)=\left(x_{1}^{*}, 0, \ldots, 0\right)$.

- Verify this is indeed an equilibrium: for player $1, x_{1}^{*}$ is a best response to $X_{-1}=0$; for player $i \geq 2, x_{i}=0$ is a best response to $X_{-i}=x_{1}^{*}$.
- Show that it is the only equilibrium: suppose $x_{i}>0$ for some $i \geq 2$; from i 's best response function, $\sum_{j} x_{j}=x_{i}^{*}<x_{1}^{*}$; from 1's best response function, $\sum_{j} x_{j} \geq x_{1}^{*}$, a contradiction.

Inefficiency of Nash equilibrium.

- Pareto efficient total quantity x^{*} solves $\max _{y \geq 0} \sum_{i=1}^{N} u_{i}(y)-p y$, determined by the first order condition $\sum_{i} u_{i}^{\prime}\left(x^{*}\right)=p$.
- Under-provision of public goods in Nash equilibrium: $x_{1}^{*}<x^{*}$.
- Nash equilibrium quantity x_{1}^{*} is inefficient low: if any player i other than player 1 contributes a share equal to $u_{i}^{\prime}\left(x_{1}^{*}\right) / p$ of the total infinitesimal amount $d x$, with player 1 contributing the remaining share, then player i would be just indifferent, but all other players including player 1 are strictly better off.

