Econ 421 Fall, 2023 Li, Hao UBC

LECTURE 2. APPLICATIONS OF NASH EQUILIBRIUM

- 1. Cournot oligopoly
 - Oligopoly: A fixed number of producers of a homogeneous good compete strategically.
 - Cournot oligopoly: quantity competition.
 - Bertrand oligopoly: price competition.

- Relate Nash equilibrium to competitive equilibrium and monopoly.
 - Competitive equilibrium: firms are price-taking.
 - Monopoly: firms collude.
- In the same oligopoly environment, quantity competition and price competition lead to drastically different equilibrium outcomes.

A formal model of Cournot Oligopoly

- Players: N firms.
- Strategies: Each firm j chooses $q_j \ge 0$.
- Payoff to each firm j is its profit $\pi_j(q_1, \ldots, q_N) = q_j (P(Q) c)$, where $Q = \sum_{j=1}^N q_j$ is the total quantity, inverse demand function P(Q) is downward-sloping and continuously differentiable, and cis the constant marginal cost.
- Assume that P(Q) > c for Q sufficiently small and P(Q) < c for Q sufficiently large.

Find Nash equilibrium using best responses.

- The best response for firm j to q_{-j} satisfies the first-order condition $P(q_j + Q_{-j}) + q_j P'(q_j + Q_{-j}) = c$, where $Q_{-j} = \sum_{i \neq j} q_i$.
- Each firm j in Nash equilibrium produces the same amount q^* , implicitly given by the intersection of best response functions: $P(Nq^*) - c = -q^*P'(Nq^*).$
- Equilibrium q^* depends on N, denoted as $q^*(N)$.
- Equilibrium price is $P(Nq^*(N))$.

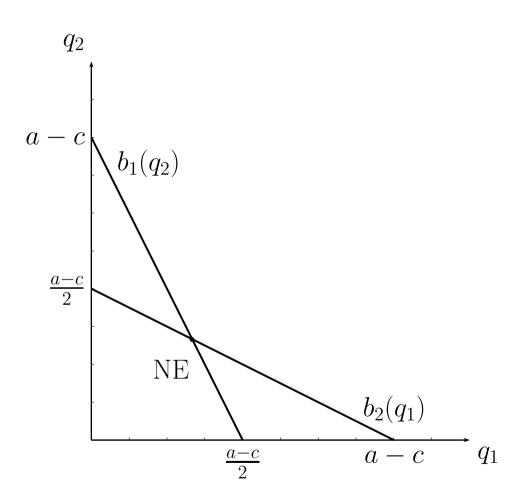
Nash equilibrium, monopoly, and competitive equilibrium.

- Since P' < 0, in Nash equilibrium $P(Nq^*(N)) > c$.
- When N = 1, Nash equilibrium coincides with monopoly.
- When $N \to \infty$, Nash equilibrium converges to the competitive equilibrium, with $P(Nq^*(N)) \to c$ and $q^*(N) \to 0$.

Example (Cournot Duopoly with linear demand). Suppose N = 2and P(Q) = a - Q, where a > c.

- Firm 1's best response function is given by $b_1(q_2) = \frac{1}{2}(a c q_2)$ if $q_2 \le a - c$, and 0 otherwise; Firm 2's best response function is $b_2(q_1) = \frac{1}{2}(a - c - q_1)$ if $q_1 \le a - c$, and 0 otherwise.
- The Nash equilibrium is the intersection of the two best response functions: $q_1^* = q_2^* = \frac{1}{3}(a-c)$.

• Illustration: a unique Nash equilibrium $(\frac{1}{3}(a-c), \frac{1}{3}(a-c))$.



2. Bertrand oligopoly

Price competition versus quantity competition, with the same demand and costs.

- In Cournot Oligopoly, firms choose quantities and then price is determined by demand.
- In Bertrand Oligopoly, firms choose price and supply the quantity demanded from their firm at that price: consumers buy only from the firm offering the lowest price.

A formal model of Bertrand Duopoly.

- Players: Firm 1 and firm 2.
- Strategies: Price $p_j \in [0, \infty)$ for each firm j.
- Payoffs: with c the constant marginal cost for both firms, and Q(p)the total demand decreasing and continuous, satisfying Q(c) > 0:

$$\pi_1(p_1, p_2) = \begin{cases} Q(p_1)(p_1 - c) & \text{if } p_1 < p_2, \\ \frac{1}{2}Q(p_1)(p_1 - c) & \text{if } p_1 = p_2, \\ 0 & \text{if } p_1 > p_2. \end{cases}$$

Bertrand Duopoly has a unique Nash equilibrium given by $p_1 = p_2 = c$.

- Verify that (c, c) is a Nash equilibrium.
- Rule out all other strategy profiles:

 $- p_i < c \text{ for } i = 1 \text{ or } 2;$

$$-p_i = c \text{ and } p_j > c \text{ for } i \neq j;$$

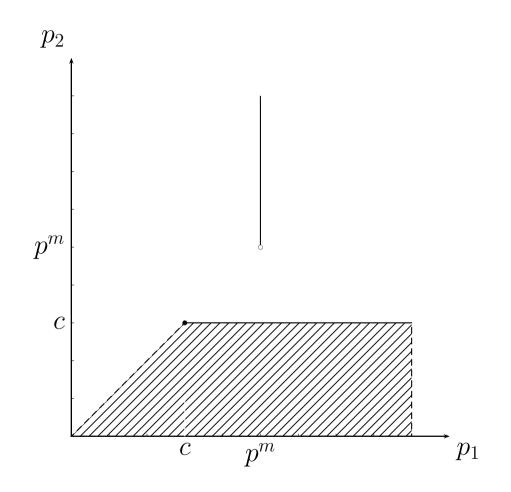
$$- p_1 = p_2 > c;$$

 $-p_i > c, p_j > c$ but $p_i \neq p_j$.

For Q(p) = a - p, we can find the unique Nash equilibria using best response functions (where p^m is the monopoly price $\frac{1}{2}(a+c)$):

$$B_{1}(p_{2}) = \begin{cases} (p_{2}, \infty) & \text{if } p_{2} < c, \\ [c, \infty) & \text{if } p_{2} = c, \\ \emptyset & \text{if } c < p_{2} \le p^{m}, \\ \{p^{m}\} & \text{if } p_{2} > p^{m}. \end{cases}$$

• Illustration: $B_1(p_2)$ and a unique Nash equilibrium (c, c).



3. The Hotelling-Downs model

- Consider two politicians competing for office.
 - They simultaneously commit to policy on left-right spectrum.
 - Both politicians care only about winning.
 - Voters' preferred policies are uniformly distributed, with each voting for whoever offers a closer policy.
 - The winner is the one with more than half of the votes.
- Related game: firms compete for customers by choosing location.

A formal model:

- Two players 1,2.
- Strategies $s_1, s_2 \in [0, 1]$.
- Payoffs: $u_1(s_1, s_2) = 1, \frac{1}{2}, 0$ if 1's vote share $r(s_1, s_2) > = , < \frac{1}{2},$ with $u_2(s_1, s_2) = 1 - u_1(s_1, s_2)$, and $r(s_1, s_2)$ given by

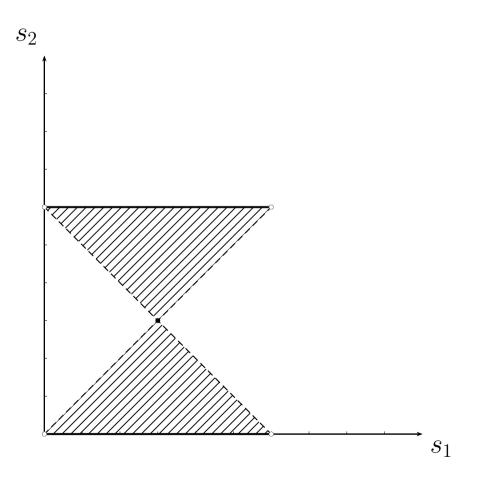
$$r(s_1, s_2) = \begin{cases} \frac{1}{2}(s_1 + s_2) & \text{if } s_1 < s_2, \\ \frac{1}{2} & \text{if } s_1 = s_2, \\ 1 - \frac{1}{2}(s_1 + s_2) & \text{if } s_1 > s_2. \end{cases}$$

• 1's best response to any s_2 :

$$B_1(s_2) = \begin{cases} (s_2, 1 - s_2) & \text{if } s_2 < \frac{1}{2}, \\ \left\{\frac{1}{2}\right\} & \text{if } s_2 = \frac{1}{2}, \\ (1 - s_2, s_2) & \text{if } s_2 > \frac{1}{2}. \end{cases}$$

• $B_2(s_1)$ is symmetric.

• Illustration: $B_1(s_2)$ and a unique Nash equilibrium $(\frac{1}{2}, \frac{1}{2})$.



4. Public goods

- A *public good*, such as national defence, radio broadcasts, and lighthouses, is
 - non-rival, in that each person's consumption has no effect on the quantity available to others;
 - non-excludable, in that it is impossible to prevent some but
 not all individuals from consuming the good.

A formal model of private provision of a public good.

- Players: N consumers.
- Strategies: Each *i* chooses $x_i \ge 0$ units of the public good to provide/purchase.
- Payoffs: $u_i(x_1 + \cdots + x_N) px_i$ for each i, where $u_i(\cdot)$ is i's utility from consumption of the public good, with u'(x) > 0 > u''(x) for all x and $u'_i(0) > p > u'(\infty)$, and p > 0 is the private cost of the public good, is constant p per unit.

Characterizing the best response function $b_i(X_{-i})$, where $X_{-i} = \sum_{j \neq i} x_j$.

- By definition, $b_i(X_{-i})$ solves $\max_{x\geq 0} u_i(x+X_{-i}) px$, with the first order condition $u'_i(b_i(X_{-i}) + X_{-i}) = p$ if $b_i(X_{-i}) > 0$.
- Then,

$$b_i(X_{-i}) = \begin{cases} x_i^* & \text{if } X_{-i} = 0, \\ x_i^* - X_{-i} & \text{if } 0 < X_{-i} < x_i^*, \\ 0 & \text{if } X_{-i} > x_i^*, \end{cases}$$

where $x_i^* = b_i(0) > 0$ is the private optimal consumption.

Assuming that $x_1^* > x_2^* \ge \ldots \ge x_N^*$, we have a unique Nash equilibrium given by $(x_1, \ldots, x_N) = (x_1^*, 0, \ldots, 0)$.

- Verify this is indeed an equilibrium: for player 1, x_1^* is a best response to $X_{-1} = 0$; for player $i \ge 2$, $x_i = 0$ is a best response to $X_{-i} = x_1^*$.
- Show that it is the only equilibrium: suppose $x_i > 0$ for some $i \ge 2$; from *i*'s best response function, $\sum_j x_j = x_i^* < x_1^*$; from 1's best response function, $\sum_j x_j \ge x_1^*$, a contradiction.

Inefficiency of Nash equilibrium.

- Pareto efficient total quantity x^* solves $\max_{y\geq 0} \sum_{i=1}^N u_i(y) py$, determined by the first order condition $\sum_i u'_i(x^*) = p$.
- Under-provision of public goods in Nash equilibrium: $x_1^* < x^*$.
- Nash equilibrium quantity x₁^{*} is inefficient low: if any player i other than player 1 contributes a share equal to u'_i(x₁^{*})/p of the total infinitesimal amount dx, with player 1 contributing the remaining share, then player i would be just indifferent, but all other players including player 1 are strictly better off.