Econ 221 Fall, 2024Li, HaoUBC

CHAPTER 11. ^COLLECTIVE-ACTION ^GAMES

- We now consider simultaneous-move games ^played by manyidentical players.
	- **–**– Each player has two strategies.
	- **–** Payoff to each ^player from each strategy depends onthe number of players choosing one versus the otherstrategy.

11.1 Collective-action games

- •*N* ^players.
- Each ^player chooses between*P* (participating in collective action) and*S* (non-participation, or shirking).
- Payoffs depend on number *n* of ^players choosing *P*.
	- **–***P*(*n*) denotes payoff to each participant.
	- **–***S*(*n*) denotes payoff to each non-participant.
- Example: public goods provision.
	- **–** *^P* here represents contributing to public goods, and *^S* represents not contributing.
	- **–** Choosing *^P* means paying ^a private cost, but increases per-player benefit to all.
	- **–** Choosing *^S* means avoiding paying the cost, but enjoys the same benefit as those choosing *^P*.

11.2 Collective-action problems

- Nash equilibrium in genera^l collective-action games.
	- **–** Number of participants *n* between ¹ and*N*− -1 is a pure-strategy Nash equilibrium of the collection-actiongame if $P(n) \ge S(n-1)$ and $S(n) \ge P(n+1)$.

-
$$
n = 0
$$
 is a Nash equilibrium if $S(0) \ge P(1)$.

–*n*=*N* is ^a Nash equilibrium if *P*(*N*)≥*S*(*N*−1).

- Nash equilibrium depends on the comparison between twofunctions, $P(n + 1)$ and $S(n)$ for $0 \le n \le N - 1$.
	- **–**Note that *^P*(0) and *^S*(*N*) have no meaning.
	- **–** Recall that *^P*(*ⁿ* ⁺ ¹) and *^S*(*n*) are known functions in ^a given collective action game.
	- **–** Below we will go through different classes of collective action games, depending on comparison of $P(n + 1)$ and *^S*(*n*).
- Multi-player Prisoners' Dilemma.
	- **–** Suppose *^S*(*n*) > *^P*(*ⁿ* ⁺ ¹) for all *ⁿ* ⁼ 0, . . . , *^N* [−] 1, but $S(0) < P(N)$.
	- **–** $-$ Then*, n* = 0 is the only Nash equilibrium.
	- **–** $-$ For $N = 2$, we have the original Prisoners' Dilemma, with *^S* corresponding to *Confess*, and *^P* to *Don't*.

$$
\begin{array}{c|c}\n & P \\
\hline\nS(0), S(0)^* & S(1), P(1) \\
\hline\nP(1), S(1)^* & P(2), P(2)\n\end{array}
$$

Multi-player Prisoners' Dilemma.

- Multi-player Game of Chicken.
	- **–** Suppose there is some *ⁿ*^ˆ between ¹ and *^N* [−] ¹ such that $P(n+1) > S(n)$ for all $n \leq \hat{n} - 1$ and $S(n) > P(n+1)$ for all $n \geq \hat{n}$.
	- **–** $-$ Then*, n* = \hat{n} is the only Nash equilibrium.
	- **–** $-$ For $N = 2$, we have Game of Chicken, with $\hat{n} = 1$, P corresponding to *Straight* and *^S* to *Swerve*.

Multi-player Game of Chicken.

- Multi-player Game of Assurance.
	- **–** Suppose there is some *ⁿ*^ˆ between ¹ and *^N* [−] ¹ such that $S(n) > P(n+1)$ for all $n \leq \hat{n} - 1$ and $P(n+1) > S(n)$ for all $n \geq \hat{n}$.
	- **–** $-$ Then*, n* = 0 and *n* = *N* are the only Nash equilibria.
	- **–** $-$ Example is Stag Hunt, for which if $N = 2$ then $\hat{n} = 1$, P corresponds to *Stag* and *^S* to *Hare*.

Multi-player Game of Assurance.

11.3 Spillovers, or externalities

• Define social payoff function*T*(*n*) as the sum of payoffs toparticipants and to non-participants.

$$
-T(n) = nP(n) + (N - n)S(n).
$$

- **–**Social optimum is achieved by*n*∗ that maximizes*T*(*n*).
- Nash equilibrium typically differs from*n*∗ .
	- **–** For example, in multi-player Prisoners' Dilemma, Nashequilibrium is $n = 0$, but $S(0) < P(N)$ implies that $T(0) < T(N).$
- Divergence between Nash equilibrium and social optimumcan be explained by spillovers, or externalities.
	- **–**– Spillover is difference between marginal private gain and marginal social gain.
	- **–** Marginal private gain at *ⁿ* is the change in individual payoff when that individual among *^N* [−] *ⁿ* non-participants switches to participation: $P(n+1) - S(n)$.
	- **–** Marginal social gain at *ⁿ* is change in social payoff whenthe number of participants goes up by 1 from n to $n + 1$: $T(n+1) - T(n).$

– $-$ Using the definition of $T(n)$, we have

$$
T(n+1) - T(n) = (n+1)P(n+1) + [N - (n+1)]S(n+1)
$$

$$
-nP(n) - [N - n]S(n)
$$

$$
= [P(n+1) - S(n)] + n[P(n+1) - P(n)]
$$

$$
+ [N - (n+1)][S(n+1) - S(n)]
$$

- **–**The second and third terms represen^t spillover.
- **–** Positive spillover in Prisoners' Dilemma: social gaincan be positive even though private gain is negative.
- Example: Traffic Congestion as collective-action problem.
	- **–** Story: each commuter chooses between ^a freeway and^a local highway; commuting time by local highway isfixed; commuting time by freeway is faster when fewcommuters choose it but is slower when many do.
	- **–** $-$ Collective-action game: $N \geq 3$ players; P is choosing freeway; *S* is choosing local highway; *^S*(*n*) ⁼ *^S* > 0; $P(n+1)$ decreases with *n* and there exists \hat{n} such that $P(n+1) > S$ for all $n \leq \hat{n} - 1$ and $S > P(n+1)$ for all $n \geq \hat{n}$.

Traffic Congestion.

- Too much congestion in equilibrium.
	- **–** As we have seen from multi-player Game of Chicken, Nash equilibrium is *ⁿ*ˆ, defined by the largest number *ⁿ*such that private marginal gain is positive.
	- **–** $S(n) = S$, from the earlier formula we have that $T(n+1) - T(n) = P(n+1) - S + n(P(n+1) - P(n)).$
	- **–**– Spillover is always negative.
	- **–**As ^a result, *ⁿ*[∗] < *ⁿ*ˆ.
- Social optimum can be achieved by privatizing freeway.
	- **–** Owner charges entrance fee *^t* to maximize revenue *nt*; commuters pay *^t* so long as *^P*(*n*) [−] *^t* [≥] *^S*, and thus *ⁿ* satisfies *^t* ⁼ *^P*(*n*) [−] *^S*; since *^S*(*n*) ⁼ *^S*, maximizing *nt* is same as maximizing $T(n)$, with revenue-maximizing price equal to *^P*(*n*[∗]) [−] *^S*.
	- **–** Social optimum *ⁿ*[∗] is achieved so long as commuters face appropriate congestion pricing, but with privateownership, there is no need to rely on any authority tochoose the price.

11.5 ^A Game of Chicken with mixed strategies

- So far, we have only looked at pure-strategy Nash equilibria in collective-action games.
	- **–** Such equilibria require ^a degree of coordination that is not always realistic, especially in relatively small groups.
	- **–** Coordination is needed whenever ^a Nash equilibriuminvolves different actions by identical players.
- Mixed-strategy Nash equilibria do not require coordination.
- Reporting ^a Crime as ^a collective-action game.
	- **–** Same setup as before, excep^t there are many witnesses: *N* witnesses of crime decide whether to repor^t it or not; reporting it costs *^C* individually; each witness receives *B* > *^C* if at least one of them reports it.
	- **–** Collective-action game: *^P* is reporting the crime; *^S* is not reporting; $P(n) = B - C$ for all $1 \le n \le N$; $S(0) = 0$ and $S(n) = B$ for all $1 \leq n \leq N-1$.
- Pure-strategy Nash equilibrium.
	- **–** This is ^a multi-player Game of Chicken: *^P*(*ⁿ* ⁺ ¹) cuts $S(n)$ from above, with $\hat{n}=1$.
	- **–** There is ^a unique pure-strategy Nash equilibrium, with $n = \hat{n} =$ $1:$ this is the only *n* satisfying $P(n) \ge S(n-1)$ and $S(n) \geq P(n+1)$.
	- **–** Nash equilibrium is socially optimal: *ⁿ*[∗] ⁼ ¹ because $T(0) = 0$ and $T(n) = n(B - C) + (N - n)B$ for $n \ge 1$.
	- **–**But who should be the one reporting the crime?
- Mixed-strategy Nash equilibrium.
	- **–**Suppose that each ^player chooses *^S* with probability *^q*.
	- **–**− By principle of indifference, $B - C = (1 - q^{N-1}) \cdot B$.
	- **–** $−$ Equilibrium *q* = (*C*/*B*)^{1/(*N*−1).}
	- **–** $-$ Comparative statics: q^N is increasing in N , and so more witnesses, smaller probability crime is reported.