Econ 221 Fall, 2024 Li, Hao UBC

CHAPTER 11. COLLECTIVE-ACTION GAMES

- We now consider simultaneous-move games played by many identical players.
 - Each player has two strategies.
 - Payoff to each player from each strategy depends on the number of players choosing one versus the other strategy.

11.1 Collective-action games

- *N* players.
- Each player chooses between *P* (participating in collective action) and *S* (non-participation, or shirking).
- Payoffs depend on number *n* of players choosing *P*.
 - P(n) denotes payoff to each participant.
 - S(n) denotes payoff to each non-participant.

- Example: public goods provision.
 - *P* here represents contributing to public goods, and *S* represents not contributing.
 - Choosing *P* means paying a private cost, but increases per-player benefit to all.
 - Choosing *S* means avoiding paying the cost, but enjoys the same benefit as those choosing *P*.

11.2 Collective-action problems

- Nash equilibrium in general collective-action games.
 - Number of participants *n* between 1 and N 1 is a pure-strategy Nash equilibrium of the collection-action game if $P(n) \ge S(n 1)$ and $S(n) \ge P(n + 1)$.

-
$$n = 0$$
 is a Nash equilibrium if $S(0) \ge P(1)$.

- n = N is a Nash equilibrium if $P(N) \ge S(N-1)$.

- Nash equilibrium depends on the comparison between two functions, *P*(*n* + 1) and *S*(*n*) for 0 ≤ *n* ≤ *N* − 1.
 - Note that P(0) and S(N) have no meaning.
 - Recall that P(n + 1) and S(n) are known functions in a given collective action game.
 - Below we will go through different classes of collective action games, depending on comparison of P(n + 1) and S(n).

- Multi-player Prisoners' Dilemma.
 - Suppose S(n) > P(n+1) for all n = 0, ..., N-1, but S(0) < P(N).
 - Then, n = 0 is the only Nash equilibrium.
 - For N = 2, we have the original Prisoners' Dilemma,
 with S corresponding to Confess, and P to Don't.

	S	Р
S	*S(0), S(0)*	*S(1), P(1)
P	$P(1), S(1)^*$	P(2), P(2)

Multi-player Prisoners' Dilemma.

- Multi-player Game of Chicken.
 - Suppose there is some \hat{n} between 1 and N 1 such that P(n+1) > S(n) for all $n \le \hat{n} 1$ and S(n) > P(n+1) for all $n \ge \hat{n}$.
 - Then, $n = \hat{n}$ is the only Nash equilibrium.
 - For N = 2, we have Game of Chicken, with î = 1, P
 corresponding to *Straight* and *S* to *Swerve*.

	S	Р
S	S(0), S(0)	*S(1), P(1)*
Р	*P(1), S(1)*	P(2), P(2)

Multi-player Game of Chicken.

- Multi-player Game of Assurance.
 - Suppose there is some \hat{n} between 1 and N 1 such that S(n) > P(n+1) for all $n \le \hat{n} - 1$ and P(n+1) > S(n)for all $n \ge \hat{n}$.
 - Then, n = 0 and n = N are the only Nash equilibria.
 - Example is Stag Hunt, for which if N = 2 then $\hat{n} = 1, P$ corresponds to *Stag* and *S* to *Hare*.

	S	Р
S	$S(0), S(0)^*$	S(1), P(1)
Р	P(1), S(1)	* <i>P</i> (2), <i>P</i> (2)*

Multi-player Game of Assurance.

11.3 Spillovers, or externalities

• Define social payoff function *T*(*n*) as the sum of payoffs to participants and to non-participants.

-
$$T(n) = nP(n) + (N - n)S(n)$$
.

- Social optimum is achieved by n^* that maximizes T(n).
- Nash equilibrium typically differs from *n*^{*}.
 - For example, in multi-player Prisoners' Dilemma, Nash equilibrium is n = 0, but S(0) < P(N) implies that T(0) < T(N).

- Divergence between Nash equilibrium and social optimum can be explained by spillovers, or externalities.
 - Spillover is difference between marginal private gain and marginal social gain.
 - Marginal private gain at *n* is the change in individual payoff when that individual among N n non-participants switches to participation: P(n + 1) S(n).
 - Marginal social gain at *n* is change in social payoff when the number of participants goes up by 1 from *n* to n + 1: T(n+1) - T(n).

– Using the definition of T(n), we have

$$T(n+1) - T(n) = (n+1)P(n+1) + [N - (n+1)]S(n+1)$$
$$-nP(n) - [N - n]S(n)$$
$$= [P(n+1) - S(n)] + n[P(n+1) - P(n)]$$
$$+ [N - (n+1)][S(n+1) - S(n)]$$

- The second and third terms represent spillover.
- Positive spillover in Prisoners' Dilemma: social gain
 can be positive even though private gain is negative.

- Example: Traffic Congestion as collective-action problem.
 - Story: each commuter chooses between a freeway and a local highway; commuting time by local highway is fixed; commuting time by freeway is faster when few commuters choose it but is slower when many do.
 - Collective-action game: $N \ge 3$ players; P is choosing freeway; S is choosing local highway; $S(n) = \overline{S} > 0$; P(n+1) decreases with n and there exists \hat{n} such that $P(n+1) > \overline{S}$ for all $n \le \hat{n} - 1$ and $\overline{S} > P(n+1)$ for all $n \ge \hat{n}$.

Traffic Congestion.

- Too much congestion in equilibrium.
 - As we have seen from multi-player Game of Chicken,
 Nash equilibrium is *n̂*, defined by the largest number *n* such that private marginal gain is positive.
 - Since $S(n) = \overline{S}$, from the earlier formula we have that $T(n+1) T(n) = P(n+1) \overline{S} + n(P(n+1) P(n)).$
 - Spillover is always negative.
 - As a result, $n^* < \hat{n}$.

- Social optimum can be achieved by privatizing freeway.
 - Owner charges entrance fee *t* to maximize revenue *nt*; commuters pay *t* so long as $P(n) - t \ge \overline{S}$, and thus *n* satisfies $t = P(n) - \overline{S}$; since $S(n) = \overline{S}$, maximizing *nt* is same as maximizing T(n), with revenue-maximizing price equal to $P(n^*) - \overline{S}$.
 - Social optimum n* is achieved so long as commuters face appropriate congestion pricing, but with private ownership, there is no need to rely on any authority to choose the price.

11.5 A Game of Chicken with mixed strategies

- So far, we have only looked at pure-strategy Nash equilibria in collective-action games.
 - Such equilibria require a degree of coordination that is not always realistic, especially in relatively small groups.
 - Coordination is needed whenever a Nash equilibrium involves different actions by identical players.
- Mixed-strategy Nash equilibria do not require coordination.

- Reporting a Crime as a collective-action game.
 - Same setup as before, except there are many witnesses:
 N witnesses of crime decide whether to report it or not;
 reporting it costs *C* individually; each witness receives
 B > *C* if at least one of them reports it.
 - Collective-action game: *P* is reporting the crime; *S* is not reporting; P(n) = B - C for all $1 \le n \le N$; S(0) = 0and S(n) = B for all $1 \le n \le N - 1$.

- Pure-strategy Nash equilibrium.
 - This is a multi-player Game of Chicken: P(n + 1) cuts S(n) from above, with $\hat{n} = 1$.
 - There is a unique pure-strategy Nash equilibrium, with $n = \hat{n} = 1$: this is the only *n* satisfying $P(n) \ge S(n-1)$ and $S(n) \ge P(n+1)$.
 - Nash equilibrium is socially optimal: $n^* = 1$ because T(0) = 0 and T(n) = n(B C) + (N n)B for $n \ge 1$.
 - But who should be the one reporting the crime?

- Mixed-strategy Nash equilibrium.
 - Suppose that each player chooses *S* with probability *q*.
 - By principle of indifference, $B C = (1 q^{N-1}) \cdot B$.
 - Equilibrium $q = (C/B)^{1/(N-1)}$.
 - Comparative statics: *q^N* is increasing in *N*, and so more witnesses, smaller probability crime is reported.