Econ 221 Fall, 2024 Li, Hao UBC

Chapter 10. The Prisoners' Dilemma and Repeated Games

• Prisoners' Dilemma.

P2

		Cooperate	Defect
D1	Cooperate	2,2	0,3*
ΙI	Defect	*3,0	*1,1*

• Prisoners' Dilemma, general formulation: h > c > d > l.

P2

		Cooperate	Defect
P1	Cooperate	С,С	l,h*
	Defect	*h, l	*d,d*

- Meaning of parameters.
 - h c is gain from unilateral defection; c l is loss from being defected on; and c - d is loss from simultaneous defections.

10.1 The basic game

- *Defect* strictly dominates *Cooperate*.
 - (*Defect*, *Defect*) is the unique Nash equilibrium.
- Why is Prisoners' Dilemma an important game?
 - Pursuit of individual interests vs collective welfare.
 - Examples: international trade, environment, pricing.
- Can players sustain mutually beneficial cooperation?

10.2 Solution 1: repetition

- Often same players engage in long-term relationship.
 - Repeated interactions between same players provide hope for sustaining cooperation, if players care about their future payoffs, because players can condition their own future plays on rival's current play.
 - Key is whether promises of future cooperation and threats of future defections are credible.

- Finite repetition.
 - Having ending date of long term relationship destroys credibility of any promise or threat: cooperation cannot be sustained.
 - Recall the example of twice-played Prisoners' Dilemma,
 with *h* = 3, *c* = 2, *d* = 1, and *l* = 0, and each player
 maximizes sum of payoffs in the two stage games.
 - Argument does not depend on number of times stage game is played: unique subgame perfect equilibrium is each player choosing *Defect* at each information set.

Subgame perfect equilibrium in a twice-played Prisoners' Dilemma.

- Infinite repetition.
 - Rollback method does not apply here because there are no smallest subgames to start with.
 - Subgame perfect equilibrium analysis still works here,
 but requires us to model how players discount future
 payoffs.
 - We will show that when players do not discount future payoffs too heavily, cooperation can be sustained.

- Discounting: common discount factor is β between 0 and 1.
 - Payoff *x* in next stage is same as βx in current stage.
 - Greater β means less discounting, and greater patience.
 - Each player's payoff from infinitely repeated game is discounted sum of payoffs from stage games.
 - Getting *x* in every future stage game is same as getting $\beta x + \beta^2 x + \ldots = \beta x / (1 \beta)$ in current stage.

- Alternative interpretations of discount factor β .
 - β as reciprocal of gross interest rate, and discounted sum of payoffs as present value.
 - β as probability that relationship lasts to the next time period, with 0 payoff if relationship breaks down.

- Trigger strategy: start with *C*, and continue with it as long as all previous stage game outcomes are (*C*,*C*); switch to *D* permanently otherwise.
 - Claim: pair of trigger strategies forms subgame perfect equilibrium when *β* is sufficiently high, and sustains cooperation indefinitely.
 - Verification: there are no smallest subgames to start rolling back, and there are many subgames, but there are only two kinds of them.

- In any subgame in which not all previous stage game outcomes are (*C*,*C*), both players playing *D* now and forever is a Nash equilibrium.
- In any subgame where previous stage game outcomes are all (*C*,*C*), including beginning of the game, we have a Nash equilibrium if $c + \beta c/(1 - \beta) \ge h + \beta d/(1 - \beta)$, which is same as $\beta \ge (h - c)/(h - d)$.
- Cooperation is sustained so long as h c is small, c d is large, and β is high.

- Tit-for-Tat: start with *C*, and choose the action in current stage what the rival chose in the previous stage.
 - Unlike the trigger strategy, tit-for-tat allows return to cooperation after unilateral defection.
 - However, the same feature means that tit-for-tag is not
 a subgame perfect equilibrium strategy for any β.
 - In any subgame after (*C*, *C*) in the previous stage, we need $c + \beta c + \beta^2 c + ... \ge h + \beta l + \beta^2 h + \beta^3 l + ...$, but in any subgame after (*C*, *D*) in the previous stage, we require the opposite.