Econ 221 Fall, 2024 Li, Hao UBC

## CHAPTER 5. SIMULTANEOUS-MOVE GAMES: CONTINUOUS STRATEGIES

- Continuous instead of discrete strategies.
  - A strategy is a real number instead of a discrete choice.
  - Rationale is analytical clarity instead of realism.

## 5.1 Pure strategies that are continuous variables

- Restaurant Pricing: setup of the game.
  - Great Wall and Colosseum choose prices simultaneously to maximize their own revenue:  $P_w$  and  $P_c$  are nonnegative real numbers.
  - Total number of customers  $Q = 120 P_w P_c$ , which is divided between  $Q_w = 60 5P_w + 4P_c$  for Great Wall, and  $Q_c = 60 5P_c + 4P_w$  for Colosseum.

- Remarks about the setup.
  - The two restaurants are imperfect substitutes in demand: if Great Wall increases  $P_w$  by \$1, it loses 5 customers while Colosseum gains only 4 customers.
  - $P_w$  and  $P_c$  can be any real numbers, not just integers.

- Best response function.
  - Great Wall's best response to Colosseum's strategy  $P_c$  is  $P_w$  that maximizes  $P_w(60 5P_w + 4P_c)$ .
  - The solution is  $P_w = 6 + 0.4P_c$ .
  - As we vary  $P_c$ , the above formula represents Great Wall's best response function.

- Nash equilibrium.
  - Colosseum's best response function is symmetrically given:  $P_c = 60 + 0.4P_w$ .
  - By definition, Nash equilibrium is an intersection of the two best response functions: we can find it by solving two equations for two unknowns.
  - By substitution, we get Nash equilibrium  $P_w = P_c = 10$ .



Figure 1. Restaurant Pricing.

- If Great Wall and Colosseum could collude with each other, they would maximize their joint revenue P(120 2P) by choosing P = 30.
  - Collusive price is higher than Nash equilibrium price.
  - Each restaurant is trying to undercut its opponent, and in Nash equilibrium they both fail.

- Cournot Duopoly: setup of the game.
  - Firm 1 and Firm 2 choose their output simultaneously to maximize their own profit:  $Q_1$  and  $Q_2$  are non-negative real numbers.
  - Market price is  $P = 150 Q_1 Q_2$ .
  - Marginal production cost is 30 for both firms; there is no fixed cost for either firm.

- Remarks about the setup.
  - Outputs by the two firms are perfect substitutes in the same market.
  - Instead of price competition in Restaurant Pricing, we have quantity competition.
  - $P = 150 Q_1 Q_2$  is the inverse demand function.

- Best response function.
  - Firm 1's best response to Firm 2's strategy  $Q_2$  is the  $Q_1$  that maximizes  $Q_1(150 Q_1 Q_2 30)$ .
  - The solution  $Q_1 = 60 0.5Q_2$ .
  - As we vary  $Q_2$ , the above formula represents Firm 1's best response function.

- Nash equilibrium.
  - Firm 2's best response function is symmetrically given:  $Q_2 = 60 0.5Q_1$ .
  - By definition, Nash equilibrium is an intersection of the two best response functions: we can find it by solving two equations for two unknowns.
  - We get the Nash equilibrium  $Q_1 = Q_2 = 40$ .



Figure 2. Cournot Duopoly.

- If the two firms could collude with each other, they would maximize their joint profit Q(150-Q-30) by choosing a total quantity of Q=60.
  - Collusive quantity is lower than the Nash equilibrium quantity, and price is higher.
  - Each firm cares only about impact on their own profit from increasing its output, and in Nash equilibrium they both produce too much.

## **5.2** Critical discussion of Nash equilibrium

- Nash equilibrium requires correct belief, which is not based on common knowledge of rationality.
  - In games with multiple Nash equilibria such as Battle of the Sexes, players may not be able to coordinate on a given Nash equilibrium.
  - In games with no Nash equilibrium in pure strategies such as Matching Pennies, Nash equilibrium fails to make any prediction.

• In Battle of the Sexes, miscoordination between the two — one paying *Boxing* and the other playing *Opera* — might occur because both *Boxing* and *Opera* are rationalizable for each player.

Woman

|     |        | Boxing | Opera |
|-----|--------|--------|-------|
| Man | Boxing | 2,1    | 0,0   |
|     | Opera  | 0,0    | 1,2   |

• In Matching Pennies, every one of the four outcomes may occur, because both *Heads* and *Tails* are rationalizable for each player.

Child 2

$$\begin{array}{c|c} Heads & Tails \\ \hline Child 1 & \hline Tails & -1,1 & 1,-1 \\ \hline \end{array}$$

## 5.3 Rationalizability

- Through iterated elimination of strategies that are never best responses, we find rationalizable strategies of each player.
- Battle of the Sexes with a never-best-response third choice.

Woman

|           | Boxing | Opera | Ноте  |
|-----------|--------|-------|-------|
| Boxing    | 2,1    | 0,0   | 1,.5  |
| Man Opera | 0,0    | 1,2   | 0,.5  |
| Ноте      | .5,0   | .5,1  | .5,.5 |

- Iterated elimination of never best responses versus iterated elimination of strictly dominated strategies.
  - If a strategy becomes strictly dominated, then it is never a best response and is eliminated in process of finding rationalizable strategies.
  - But some strategies are never best responses and are eliminated even though they are not strictly dominated.

- Rationalizability and Nash equilibrium.
  - A Nash equilibrium strategy of any player is always rationalizable, through strategies of other players in the same equilibrium.
  - Unlike Nash equilibrium, rationalizability requires only common knowledge of rationality, and makes different predictions (Battle of the Sexes, Matching Pennies).
  - If rationalizability leads to the unique Nash equilibrium,
    then the prediction is more appealing.