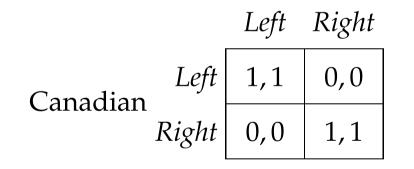
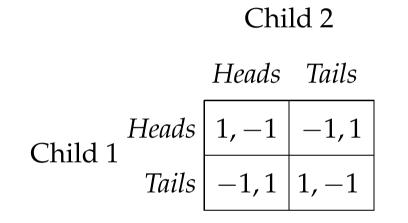

Econ 221 Fall, 2024 Li, Hao UBC

CHAPTER 4. SIMULTANEOUS-MOVE GAMES: DISCRETE STRATEGIES

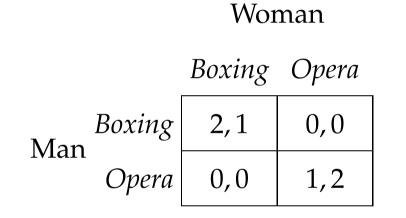
- Simultaneous instead of sequential moves.
 - Strategy is a single action instead of a complete plan of actions.
 - Common knowledge of rationality is generally no longer sufficient to yield a unique equilibrium predication.


The centipede game again.

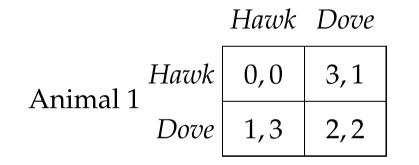
4.1 Game table


- A graphical representation of simultaneous-move games.
 - Row player chooses a row, column player a column.
 - Each player has a finite number of strategies.
 - Each cell is marked with the payoff of the row player and the payoff of the column player associated with the row and the column.

- Some famous 2 × 2 game tables.
 - Pure Coordination: there is no conflict between the two players, but each has to guess which way the other is trying to coordinate.


British

 Matching Pennies: an example of zero-sum (or constantsum) game, with no common interest at all.



 Battle of the Sexes: two players share common interest in coordinating, but they each have their own favorite way of coordinating.

 Hawk and dove (Game of chicken): two players share common interest in avoiding a bad outcome, and again they have their own favorite way of doing so, but there is also a quite attractive compromise.

Animal 2

 Prisoners' Dilemma: two players have no interests in coordination, and unlike in Matching Pennies, each player has an obvious way to play that involves no guessing, leading to a collectively bad outcome.

Prisoner 2

		Confess	Not confess
Prisoner 1	Confess	1,1	3,0
	Not confess	0,3	2,2

4.3 Dominance

- For a given player, if one strategy gives a higher payoff than another strategy no matter what the opponent chooses, we say the first strategy dominates the second strategy, or the second strategy is dominated by the first strategy.
- Among above five 2 × 2 examples, dominance relationship exists only in the Prisoners' Dilemma.

- A player has a dominant strategy if it dominates all other strategies of this player.
 - Rationality requires a player to play dominant strategy if the player has one.
- If each player has a dominant strategy in a game, then the game is dominance solvable.
- Prisoners' Dilemma is dominance solvable.
 - Both players would be better off if they simultaneously switch to the dominated strategy.

- In a two-player game, if only one player has a dominant strategy, the game remains dominance solvable.
 - Knowledge of rationality requires the player without
 a dominant strategy to choose a best response to the
 dominant strategy of the other player.
- A mix of Game of Chicken and Prisoners' Dilemma.

Driver 2

		Straight	Swerve
Driver 1	Straight	0,1	3,0
	Swerve	1,3	2,2

- A two-player game where neither player has a dominant strategy may still be dominance solvable through iterated elimination of dominated strategies.
 - This requires at least one player to have at least one dominated strategy.
 - Rationality requires the player not to play it.
 - Knowledge of rationality then requires the other player to eliminate any strategy that becomes dominated.
 - And so on, until one strategy for each player is left.

• An extended Battle of the Sexes: with a third choice added, there is still no dominant strategy for either player, but the game is solvable through 4 rounds of iterated elimination of dominated strategies.

	Boxing	Opera	Home
Boxing	2,1	0,0	2,.5
Man Opera	0,0	1,2	0,1
Ноте	1,0	2,.5	1,1

Woman

- Round 1: *Opera* is eliminated for Man.

Woman

		Boxing	Opera	Home
Man	Boxing	2,1	0,0	2,.5
	Home	1,0	2,.5	1,1

- Round 2: Opera is eliminated for Woman.

WomanBoxingHomeMan2,12,.5Home1,01,1

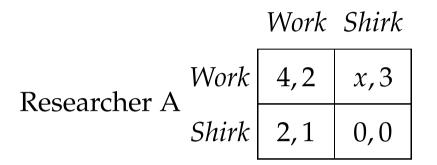
- Round 3: *Home* is eliminated for Man.

Woman

BoxingHomeMan Boxing2,12,.5

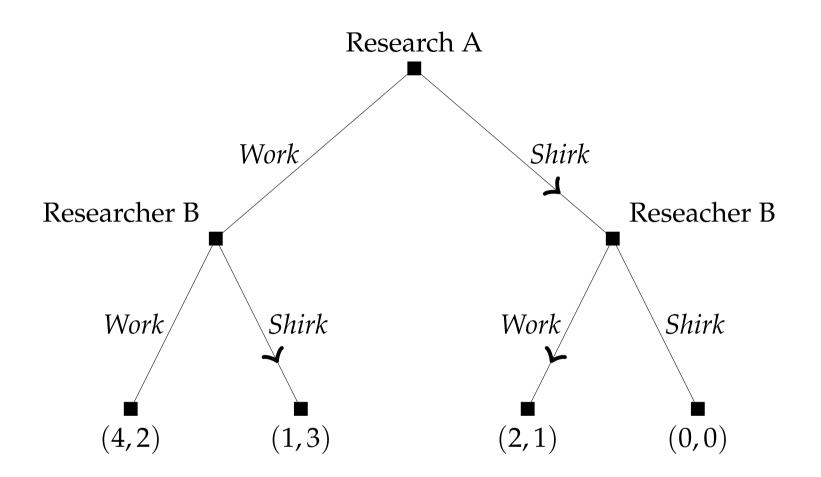
- Round 4: *Home* is eliminated for Woman.

Woman


Boxing Man Boxing 2,1

4.4 Stronger and weaker forms of dominance

- For a given player, one strategy superdominates another strategy if the lowest payoff from playing the former is higher than the highest payoff from playing the latter.
 - Superdominance implies strict dominance, but reverse is generally not true.
 - Superdominance implies order irrelevance, that is, the superdominant strategy will be played whether the player moves first, second, or simultaneously.


• A game of two researchers.

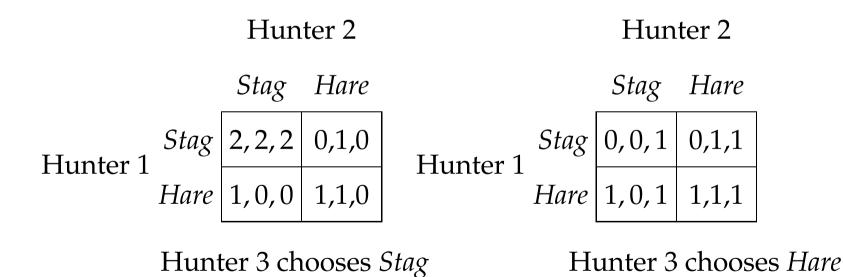
Researcher B

When two researchers A and B both choose *Shirk*, their joint project remains incomplete and each gets 0. If at least one of them chooses *Work* the project is completed, and the payoffs depend on how much they value the completed project, and how much effort costs.

- If x = 3, Work superdominates, and, a fortiori, strictly dominates, *Shirk* for Researcher A. The outcome is A choosing *Work* and B choosing *Shirk*, regardless of whether A moves first, second, or simultaneously with B.
- If x = 1, for Researcher A *Work* strictly dominates, but does not superdominate, *Shirk*. The outcome is A choosing *Work* and B choosing *Shirk*, if either A moves second or simultaneously with B, but is A choosing *Shirk* and B choosing *Work* if A moves first.

When x = 1, Researcher A plays *Shirk* when he moves first.

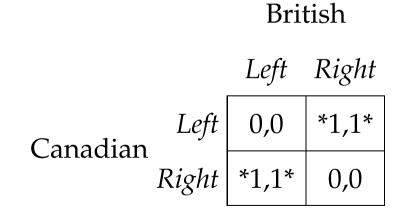
- Weak dominance: for a given player, if one strategy gives a payoff at least as high as another strategy regardless of what the opponent chooses, and a strictly higher payoff against at least one strategy of the opponent, the first strategy weakly dominates the second strategy.
- Simultaneous-move version of Entry Deterrence.


Incumbent

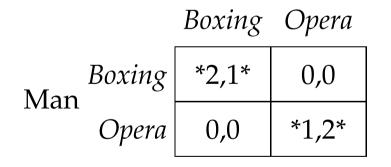
		Accommodate	Fight
Startup	Stay out	0,2	0,2
	Enter	1,1	-1,-1

- We can define a weakly dominant strategy, and method of iterated elimination of weakly dominated strategies.
- Rationality now no long requires a player to eliminate any weakly dominated strategy, but is consistent with it.
- Most games are not dominance-solvable through iterated elimination of strictly or weakly dominated strategies.
 - Common knowledge of rationality is insufficient for a unique equilibrium prediction, but the method remains useful in practice.

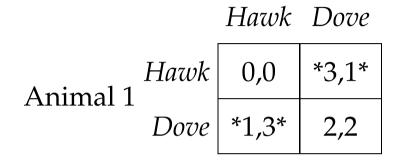
4.6 More players


- Games tables can be used to represent simultaneous-move games with three players.
 - Stag Hunt with three hunters.

- With more than 3 players, game table is no longer helpful.
- Number of players does not affect iterated elimination of (strictly or weakly) dominated strategies.
 - Beauty Contest.
 - Application of iterated elimination of weakly dominated strategies.


4.5 Best response analysis

- In two-player games, for each column (row), mark all rows (columns) that give highest payoff for row (column) player.
 - Best response analysis is systematic strategic thinking.
- 2×2 examples.



Child 2 Heads Tails Child 1 Heads $\begin{bmatrix} *1,-1 & -1,1^* \\ Tails & -1,1^* & *1,-1 \end{bmatrix}$

Woman

Animal 2

Prisoner 2

		Confess	Not confess
Prisoner 1 N	Confess	*1,1*	*3,0
	Not confess	0,3*	2,2

• Ties in payoffs lead to multiple best responses.

Incumbent

		Accommodate	Fight
Startup	Stay out	0,2*	*0,2*
	Enter	*1,1*	-1,-1

- Best response analysis with more than two players.
 - In Stag Hunt, *Stag* is the best response for any hunter if all others choose *Stag*, and *Hare* is the best response otherwise.

4.2 Nash equilibrium

- We have an equilibrium if each player uses a strategy that best responds to strategies of other players.
 - Equivalently, an equilibrium is reached when no single player wishes to change strategy.
- Two features of equilibrium.
 - Non-cooperative: consider only unilateral deviations.
 - Correct beliefs: each player' equilibrium strategy is a best response to equilibrium strategies of other players.

- Nash equilibrium and best response analysis.
 - In two-player games, a Nash equilibrium corresponds to a cell whose row and column are both marked.

Woman

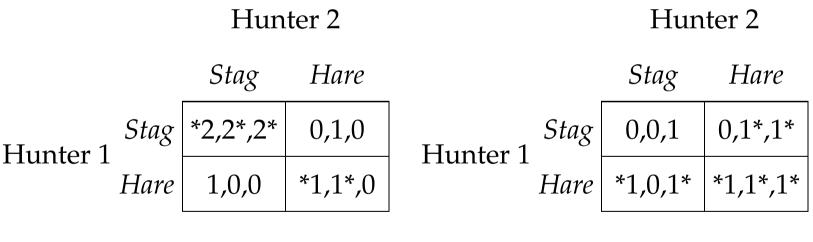
	Boxing	Opera	Home
Boxing	*3,2*	0,0	*2,1
Man Opera	0,0	1,4*	0,1
Home	2,0	*2,0	1,1*

- Nash equilibrium and strict dominance.
 - Only strategies that survive iterated elimination of strictly dominated strategies can be a player's candidates for equilibrium strategy.
 - A solution obtained through iterated elimination of strictly dominated strategies is the only Nash equilibrium.

- Nash equilibrium and weak dominance.
 - A solution obtained through iterated elimination of weakly dominated strategies is still a Nash equilibrium, but there may be other (less appealing) Nash equilibria.

Incumbent

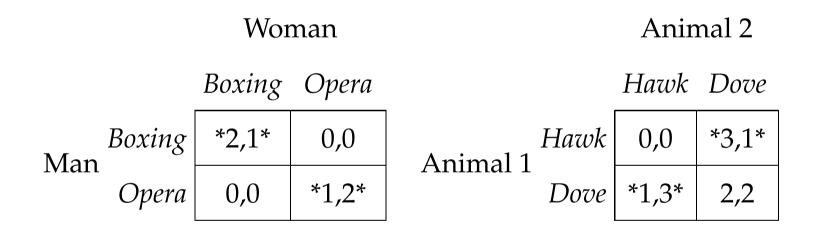
		Accommodate	Fight
Startup	Stay out	0,2*	*0,2*
	Enter	*1,1*	-1,-1


4.7 Multiple Nash equilibria

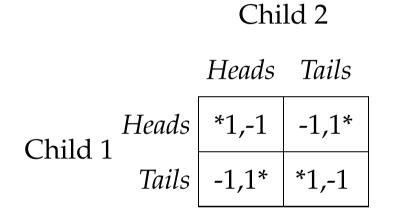
- Nash equilibrium as social convention.
 - Recall two features: non-cooperative and correct belief.
 - Nash equilibrium rules out non-conventions, but is silent about which convention will be formed.

American Man

PushPullCanadian WomanPush0,0*1,1*Pull*1,1*0,0


- Nash equilibria in assurance games.
 - In Stag Hunt, (*Stag, Stag, Stag*) is a risky Nash equilibrium, and (*Hare, Hare, Hare*) a safe one; Nash equilibrium makes no prediction between the two.

Hunter 3 chooses Stag


Hunter 3 chooses Hare

• In games with some conflicts, Nash equilibrium rules out some resolutions but is silent about which of the remaining ones will emerge.

4.8 No Nash equilibrium in pure strategies

• Matching Pennies does not have a Nash equilibrium.

• Some zero-sum games have a Nash equilibrium; some nonzero-sum games have no Nash equilibrium.