Solutions to Chapter S Exercises

SOLVED EXERCISES

If you find a blank space where an equation or figure may appear, please select

that area for it to appear.

SI1. (a) R’s best-response rule is given by y = 10Vx — x. L spends $16 million, so
x = 16. Then R’s best response is y = 10V16 — 16 = 10(4) — 16 = 40 — 16 = 24, or $24 million.

(b) R’s best response is y = 10Vx — x, and L’s best response is x = 10\y — y. Solve these

simultaneously:
x = 10(10Vx — )12 — 10Vx + x
= \x=(10\x —x)!12

= x=10Vx—x

= 2x=10Vx
= VYx=5
= x=25

y=10V25-25=25

S2. (a) Xavier’s costs have not changed, nor have the demand equations, so Xavier’s best-
response rule is still the same as in Figure 5.1: Px =15 + 0.25Py. Yvonne’s new profit function is By = (Py
—2)Qy = (Py — 2)(44 — 2Py + Px) = —2(44 + Px) + (4 + 44 + Px)Py — 2(Py)2. Rearranging or differentiating
with respect to Py leads to Yvonne’s new best-response rule: Py = 12 + 0.25P«. Solving the two response

rules simultaneously yields Px = 19.2 and Py = 16.8.

(b) See the graph below. Yvonne’s best-response curve has shifted down; it has the same
slope but a new, lower intercept (12 rather than 15). Yvonne is able to charge lower prices due to lower

costs. The new intersection point occurs at (19.2, 16.8), as calculated above.
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S3. (a) La Boulangerie’s profit is
Y1 =PiQi - Qi =Pi(14 - P1 - 0.5P2) — (14 — P1 — 0.5P2) = — P12 + 15P1 — 0.5P1P> + 0.5P>
—14.

To find the optimal P; without using calculus, we refer to the result in the appendix to Chapter 5,
remembering that P> is a constant in this situation. Using the notation of the appendix, we have A = 0.5P>

—14,B=15-0.5P,, and C = 1, so the solution is

P =B/(2C) = 15 — 0.5P2/(2), or P1 = 7.5 — 0.25P».

This is La Boulangerie’s best-response function. You get the same answer by setting 0Y,/0P, = —

2P; + 15— 0.5P2 = 0 and solving for P;.
Similarly, La Fromagerie’s profit is
Y2=P2Q2—-2Q2=P2(19 - 0.5P1 — P2) - 2(19 — 0.5P; — P2) =— P22 + 21P> — 0.5P1P> + P; — 38.
Again, using the notation in the appendix, A=P; —38, B=21-0.5Py, and C = 1, which yields
P, =B/(2C) =21 -0.5P1/(2), or P =10.5 - 0.25P.

This is La Fromagerie’s best-response function. You get the same answer by setting 0Y,/0P,=—

2P, + 21 — 0.5P; = 0 and solving for P;.

To find the solution for the equilibrium prices analytically, substitute La Fromagerie’s best-

response function for P> into La Boulangerie’s best-response function. This yields P1 = 7.5 — 0.25(10.5 —
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0.25Py), or P1 =5.2. Given this value for P1, you can find P2 = 10.5 — 0.25(5.2) = 9.2. The best-response

curves are shown in the diagram below:

P
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Nash equilibrium

joint profit
maximized

(b) Colluding to set prices to maximize the sum of profits means that the firms maximize the joint-

profit function:
Y=Y1+Y2=16P; +21.5P, - Pi2—P2— PP, - 52

To answer without calculus, use the result in the appendix. Using that notation to solve for P1, A
=21.5P, —P»2-52, B=16-P3, and C = 1, so the solution is

P; =B/(2C) = 16— P2/(2), or P; = 8 — 0.5P-.

Similarly, solving for P>, A= 16P; — P12 - 52, B=21.5—Pj, and C = 1, so the solution is
P, =B/(2C)=21.5-P1/(2), or P2=10.75 - 0.5P>.

Solving these two equations simultaneously yields the solution P; =3.5 and P> =9.

You can get the same answer by partially differentiating the joint-profit function with

respect to each price. Profits must be maximized with respect to both P and P2, so we need 0Y/dP; = 16

—2P1—P2=0and 0Y/0P,=21.5-P1-2P>=0.

(©) When firms choose their prices to maximize joint profit, they act as a single firm and
ignore any individual incentives that they might have to deviate from the joint profit goal. However, given
their partner’s collusive price, each company can reap more profit individually by charging more. For
instance, plugging the joint-profit-maximizing value of La Boulangerie’s price into La Fromagerie’s

individual best-response rule will not yield La Fromagerie’s joint profit-maximizing price:
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P,=10.5-0.25(3.5)=9.625 =9

Likewise, plugging the joint-profit-maximizing value of La Boulangerie’s price into La Fromagerie’s

individual best-response rule gives
P1=75-0.2509)=4.75=3.5.

Thus, the two joint profit-maximizing prices are not best responses to each other; that is, they do not form

a Nash equilibrium.

(d) When firms produce substitutes, a drop in price at one store hurts the sales of the other.
Thus, as your rival drops her price, you also want to drop yours to attempt to maintain sales (and profits).
In the bistro example in the text and in Exercise 1 above, this result led to best-response curves that were
positively sloped and Nash equilibrium prices that were lower than the joint-profit-maximizing prices.
Here, the firms produce complements, so a drop in price at one store leads to an increase in sales at the
other. In this case, as one store drops its price, the other can safely increase its price somewhat and still
maintain sales (and profits). Thus, the best-response curves are negatively sloped, and the Nash

equilibrium prices are higher than the joint-profit-maximizing prices.

S4. To rationalize the nine possible outcomes, you need a separate
argument for each one. We offer just one example, leaving you to construct the rest. Note that you need
not consider the strategy combination (A, A) since that is a Nash equilibrium and therefore rationalizable.
Consider (A, C) leading to the payoffs (0, 2). C is a possible best response for Column if he thinks that
Row is playing A. Why does Column believe this? Because he believes that Row believes that Column is
playing B. Column justifies this belief by thinking that Row believes that Column believes that Row is
playing C. The beliefs in this chain are all perfectly rational because each strategy of either player is a

best response (or among the best responses) to some strategy of the rival player.

SS. No matter what beliefs Colin might hold about what Rowena is
playing, South is never Colin’s best response. Therefore, South is not a rationalizable strategy for Colin.
Since Rowena recognizes this, and since Earth is Rowena’s best response only against Colin’s South,
Rowena does not play Earth. Since North is Colin’s best response only against Earth, Colin will not play
North. Since Colin will never play North or South, Wind is never a best response for Rowena. The
remaining strategies—Water and Fire for Rowena and East and West for Colin—are used in the two pure-

strategy Nash equilibria, so they are certainly rationalizable.
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Sé. Using the third-round range of Qa, we have that Oz = 12 — Qa/2 must
be at most 12 — 9/2 =12 — 4.5 =7.5 (nothing new here) and at least 12 — 12.75/2 =12 - 6.375 =5.625 (a
narrowing of the range: after the third round, the lower bound was 4.5). Similarly, using the third-round
range of Oz, we find that Oa = 15 — 07/2 must be at most 15 —4.5/2 = 15 — 2.25 = 12.75 (nothing new)
and at least 15— 7.5/2 = 15 — 3.75 = 11.25 (a narrowing of the range: in the third round, the lower bound
was 9). We see that in even rounds the lower bounds get tighter, and in odd rounds the upper bounds get

tighter.

S7. (a) Cart 0 serves x customers and Cart 1 serves (1 — x), where x is defined by the
equation po + 0.5x2 = p1 + 0.5 (1 — x)2. Expanding this equation yields po + 0.5x2 = p1 + 0.5 — x +0.5x2, and
solving for x yields x = p1 — po + 0.5. Thus Cart 0 serves p1 — po + 0.5 customers, and Cart 1 serves 1 —x,

or po— p1 + 0.5, customers.

(b) Profits for Cart 0 are (p1 — po + 0.5)(po — 0.25). Profits for Cart 1 are symmetric:
(po—p1+0.5)( p1 — 0.25). Expanding the expression for Cart 0 profits yields (p1 — po + 0.75)po — (0.25p1
+ 0.125). Solving for the profit-maximizing value of po by completing the square or differentiating with

respect to po yields po = 0.5p1 + 0.375. Cart 1’s best-response rule is symmetric: p1 = 0.5po + 0.375.

() The graph is shown below. The Nash equilibrium prices are the values of po and
p1 that solve simultaneously the two best-response rules found in part (b). Substituting Cart 1’s best-
response rule into that for Cart 0, we find po = 0.5(0.5p0 + 0.375) + 0.375 = po + 0.5625. Solving for po
yields po = 0.75 (75 cents); Cart 1’s price is p1 = 0.75 (75 cents) also.

Cart 0's
price P,
1 -
Cart 0 Nash
0.5 equilibrium
/éart 1
\ Cart1's
0.5 1 price P,

S8. (a) South Korea’s profit is

Ykorea = (Korea X P — cKorea X (JKorea = qKorea(l 80 — Q) - 30qKorea

= qKorea(l 80— (Korea — q.lapan) - 30qKorea
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= *qKoreaz + (1 80— 30)qKorea — (Korea X (Japan.

Using the notation in the appendix yields A = 0, B = 150 —qyapan, and C = 1, so South Korea’s best

response is
gkorea= B/(2C) = 150 — qyapan/(2), o qKorea= 75 — 0.5qapan.
This is South Korea’s best-response function. You get the same answer by setting
YK orea’ 99K orea = —2qKorea + 150 — Qrapan = 0 and solving for qxorea.
Since Japan has the same price and cost per ship as South Korea, Japan’s profit is
Y sapan = —Quapan® + (180 — 30)qrapan — qKorea X (Japan.
Similarly, Japan’s best-response function is
Qapan = 75 — 0.5qKorea.

(b) To find the solution for the equilibrium prices, substitute Japan’s best-response function

for qyapan into South Korea’s best-response function. This yields

qKorea = 75 — 0.5qapan = 75 — 0.5(75 — 0.5qKorea) = 37.5 + 0.25qKorea
= gKorea = 50.
Therefore, qyapan = 75 — 0.5(50) = 50.

The price of a VLCC is given by the expression P = 180 — Q, where Q = qkorea + Qyapan = 50 +
50 = 100. Therefore, P = 180 — 100 = 80, or $80 million.

South Korea’s profit is
YKorea = —qKorea + (180 — Ckorea)qKorea — QKorea X QJapan
=—(50)2 + (180 — 30)(50) — (50)(50) =-2,500 + 7,500 — 2,500 = 2,500.
Likewise, Japan’s profit is
Y japan = —Quapan? + (180 — Capan)qQiapan — QKorea X Qlapan = 2,500.
Therefore, both countries make $2.5 billion in profits.

(©) South Korea’s new best-response function is

qKorea = 90 — O.SCKorea — O.quapan = 90 — 05(20) — O.quapan: 80 —_
O.quapan.

Japan’s new best-response function is
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(lJapan = 90 - 0. SCJapan 0. SqKorea 90 - 0. 5(40) 0. SqKorea 70 —
O-SqKorea-

To find the solution for the new equilibrium prices, substitute Japan’s new best-response function

for qyapan into South Korea’s best-response function. This yields
qKorea = 80 — 0.5qsapan = 80 — 0.5(70 — 0.5qKorea), OF qKorea = 60.
Given this value for qxorea,
Qlapan = 70 — 0.5qKorea = 70 — 0.5(50), or qrapan = 45.

South Korea’s market share is 60 / (60 + 45) = 57%, and Japan’s market share is approximately
43%.

South Korea’s profit is
YKorea = —(QKorea? T (180 — CKorea)qKorea — qKoreaQJapan
=—(60)2 + (180 —20)(60) — (60)(45)
=-3,600 + 9,600 — 2,700 = 3,300, or $3.3 billion.
Japan’s profit is
Y Japan = —Qapan? + (180 — Cyapan)qsapan — QKoreaQJapan
=—(45)2+ (180 —40)(45) — (60)(45)

=-2,025 + 6,300 — 2,700 = 1,575, or $1.575 billion.

S9. (a) South Korea’s profit is

YKorea = (JKorea, P- CKorea(Korea = qKorea(180 - Q) - 30qK0rea = qKorea(180 — (Korea — (Japan — thina) -
30qK0rea = —qKorea2 + (1 80 — 30) X (Korea — (Korea X (Japan — (Korea X (China.

Using the notation in the appendix, A =0, B = 150 — qapan — qchina, and C = 1, so the solution is
gKorea= B/(2C) = (150 — qapan — qChina)/2, OF qKorea= 75 — 0.5qapan — 0.5qcnina. This is South Korea’s best-

response function. You get the same answer by setting 0YK grea/ 94K orea = —29Korea + 150 — Qrapan —

qchina = 0 and solving for qxorea.

Since Japan and China face the same price (P = 180 — Q) and cost (CKorea = CJapan = CChina) a$

South Korea, the best-response functions for Japan and China are
(Japan = 75-0. SqKorea 0. Sthina

and (China = 75— O-SQKorea - O-Sanpan.
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(b) To find the solution for the equilibrium prices, first substitute China’s

best-response function into Japan’s best-response function:
(Japan =75 — 0.5qKorea — 0.5(75 — 0.5qKorea — 0.5qapan)

= QJapan =50 — qxorea/3
Next, substitute Japan’s best-response function into China’s best-response function:
qchina = 75 — 0.5¢Korea — 0.5(75 — 0.5qKorea — 0.5qChina)
= (China =50 — gKorea/3

Then substitute these expressions for qrapan and qcnina into South Korea’s best-response function:
qKorea = 75 — 0.5quapan — 0.5qchina = 75 — 0.5(50 — qKorea/3) — 0.5(50 — gkorea/3) = 25 + qKorea/3

= (Korea = 37.5

Japan and China have symmetric best response functions, so qyapan = 37.5 and qchina = 37.5.

Each country produces 37.5, so each has a market share of 33.3%.

Since each country has the same market share, price, and cost, they will all earn the same profit.

South Korea’s profit is
Y Korea = *qKoreaz + (180 - 30)qKorea — (Korea X (Japan — (Korea X (JChina

= (37.5) + (150)(37.5) — (37.5)(37.5) — (37.5)(37.5) = 1,406.25, or
$1,406.25 million.

(©) In the duopoly situation, each country produced 50 VLCCs per year at
a price of $80 million each, for a profit of $2.5 billion per country. In the triopoly, each country produced
37.5 VLCCs per year at a price of $67.5 million each. The third producer increases the total output
(supply), lowering the price per VLCC and therefore the profits made per country. There is a greater
number of VLCCs available for purchase, but this lowers the price and therefore also the collective profits
(roughly $4.2 billion versus $5 billion), which are now split among three countries instead of between

two.

S10. (a) Since the joint profits of the partnership are split equally, Monica and
Nancy each get a payoff of 0.5(4m + 4n + mn) = 2m + 2n + 0.5mn, minus her own effort cost. Therefore
Monica’s payoff is 2m + 2n + 0.5mn — m2 and Nancy’s payoffis 2m + 2n + 0.5mn —n2. If m =n =1, each
partner receives a payoff of 2(1) + 2(1) + 0.5(1)(1) — 1 = 3.5, or $35,000.
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(b) We find Nancy’s best-response function by maximizing the expression
Yn=2m + 2n + 0.5mn — n2. Using the notation in the appendix, A=2m,B=2+0.5m,and C=1, so

Nancy’s best-response function is
n=B/2C)=2+0.5m/(2) =1+ 0.25m.
You get the same answer by setting dY,/dn =-2n+ 2 + 0.5m = 0 and solving for n.

When Monica puts in effort of m = 1, Nancy’s best response is
n=1+0.25m=1+0.25(1)=1.25.

(©) We know from part (b) that Nancy’s best-response functionisn=1+
0.25m. The game is symmetric; Monica’s best-response function is m = 1 + 0.25n. To find the solution for
the equilibrium effort levels, substitute Nancy’s best-response function into Monica’s best-response

function:
m=1+0.25(1 + 0.25m)
= m=4/3
Given this value of m, Nancy’s effort will be
n=1+0.25(4/3) = 4/3.

The Nash equilibrium to this game has both Monica and Nancy putting in an effort of 4/3.

S11. Because Xavier cannot rationally believe that Yvonne will charge a negative price, and
because his best-response function is P = 15 + 0.25P), his own price Px can never be below 15. A similar
calculation done by Yvonne ensures that her price Py cannot be less than 15 either. In the second round of

this thinking, each sees through the other’s first-round thinking, and therefore does not set a price less
than 15 + 0.25(15) = 18.75.

However, this narrows the range of prices only from below the Nash equilibrium. To narrow from
above, we need a starting point, namely an upper limit to the prices, such that no rational player would
ever contemplate charging anything higher. If there were a price so high that you would sell nothing if
you charged that, no matter the other’s price, that would do. However, for the linear functions stipulated
here, that is not the case. Consider Xavier. Might he charge Px = 1,000? That would be his best response if
he believed that Yvonne would charge P, = (Px — 15)/0.25 = 4 x 985 = 3,940, in which case he would sell
O =44 -2 x 1,000 + 3,940 = 1,984. And he might believe that Yvonne would charge P, = 3,940 because
he thinks she believes that he would charge Pr = (3,940 — 15)/0.25 = 15,700, in which case she would
expect to sell O, =44 —2 x 3,940 + 15,700 = 7,864. And so on. Of course these are absurd prices for
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meals, but that is because the linear functions we stipulated are unlikely to be valid over such a large
range. If it is not rational for anyone to charge a price higher than, say, 500, then because they know this,
in the second round of thinking it is not rational for either to charge a price higher than 15 + 0.25 x 500 =
140. In the third round of thinking this upper limit drops to 15 + 0.25 x 140 = 50, and so on, eventually

converging to the Nash equilibrium level of 20.

S12.  (a) Because everyone has to choose a number less than or equal to 100, the
average (X) cannot exceed 100, and half of the average (X/2) cannot exceed 50. Therefore choosing 79
will place Elsa closer to (X/2) than choosing 80 regardless of what the others choose. By definition of
dominance, 80 is dominated. In fact the same argument shows that anything above 50 is (strictly)

dominated.

(b) Suppose all of Elsa’s classmates choose 40. If she chooses anything
between 41 and 50 (remember that anything above 50 is dominated), the average X will be < (50 +
49(40)) / 50 = 40.2 and (X/2) will be <20.1, so Elsa will be further away from (X/2) than her classmates.
If Elsa chooses 40, she will tie with her classmates. Thus, we know that Elsa will select a number less
than 40. Suppose Elsa chooses n < 40. The average of all numbers will be X = [49(40) + n]/50 = (1,960 +
n)/50. To win, Elsa’s number must be closer to X/2 than 40 which requires 40 — (X/2) > (X/2) — n, or 40 +
n> X = (1,960 + n)/50. This expression simplifies to 2,000 + 50n > 1,960 + n which holds for all possible
values of n. Therefore, Elsa can win by choosing any number (n) below 40; the range of winning numbers
is from 0 to 39!

(©) Similarly, if Elsa knew that all of her classmates would submit the
number 10, Elsa will do worse by choosing anything above 10 and tie with 10. If she chooses n between 0
and 9, then X = [49(10) + n]/50 = (490 + n)/50. Elsa will then win if 10 — (X/2) > (X/2) —=n, or 10 +n >
X. Then 10 + n > (490 + n)/50 or 500 + 50n > 490 + n which again holds for all possible values of n.
Therefore, Elsa’s set of best responses in this situation is the same as in part (b) in the sense that any
number less than what the rest of her classmates are submitting will win the game for her; her range of

winning numbers is from 0 to 9.

(d) More generally, if all of her classmates choose 0 <m < 50 and Elsa
chooses n <m, X = (49m+n)/50, and we solve for m — (X/2) > (X/2) — n, or m+n > X = (49m+n)/50, or
50m+50n > 49m-+n, or m+49n > 0, which is true for all n > 0. We get equality if m = n = 0: if all others are
choosing 0, Elsa cannot do any better than to choose 0. That is the Nash equilibrium. (Intuitively, there is
an incentive to deviate from any number played by everyone else in the class if that number is positive.
Zero, however, works as a symmetric Nash equilibrium strategy because it is its own best response: 0 =
(1/2) * 0).
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(e) To find rationalizable strategies to this game, use iterated elimination of never-best
responses. We know from part (a) that any number greater than 50 is never a best response. On the basis
of this fact, we determine that (1/2) x 50 = 25 is also never a best response. You continue this iterated

elimination until you are left with the only rationalizable strategy in the game, which is choosing zero.
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